A304623 Regular triangle where T(n,k) is the number of aperiodic multisets with maximum k that fit within some normal multiset of weight n.
1, 1, 2, 1, 4, 4, 1, 6, 11, 8, 1, 10, 21, 27, 16, 1, 12, 38, 61, 63, 32, 1, 18, 57, 120, 162, 143, 64, 1, 22, 87, 205, 347, 409, 319, 128, 1, 28, 122, 333, 651, 950, 1000, 703, 256, 1, 32, 164, 506, 1132, 1926, 2504, 2391, 1535, 512, 1, 42, 217, 734, 1840
Offset: 1
Examples
Triangle begins: 1 1 2 1 4 4 1 6 11 8 1 10 21 27 16 1 12 38 61 63 32 1 18 57 120 162 143 64 1 22 87 205 347 409 319 128 The a(4,3) = 11 multisets are (3), (13), (23), (113), (123), (133), (223), (233), (1123), (1223), (1233).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&],Max],{n,10}]
-
PARI
T(n,k) = sum(j=1, n, sumdiv(j, d, sum(i=max(1, j+k-n), d, moebius(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1)))) \\ Andrew Howroyd, Jan 20 2023
Formula
T(n,k) = Sum_{j=1..n} Sum_{d|j} Sum_{i=max(1, j+k-n)..d} mu(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1). - Andrew Howroyd, Jan 20 2023
Comments