cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A304632 Expansion of (1/(1 - x))* Product_{k>=1} (1 + x^k)/(1 + x^(3*k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 15, 18, 22, 27, 33, 40, 48, 57, 67, 79, 93, 109, 127, 147, 170, 196, 226, 260, 298, 340, 387, 440, 500, 567, 641, 723, 814, 916, 1030, 1156, 1295, 1448, 1617, 1804, 2011, 2239, 2489, 2763, 3064, 3395, 3759, 4158, 4594, 5070, 5590, 6159, 6781, 7460, 8199, 9003
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Comments

Partial sums of A003105.

Crossrefs

Programs

  • Mathematica
    nmax = 57; CoefficientList[Series[1/(1 - x) Product[(1 + x^k)/(1 + x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 57; CoefficientList[Series[1/(1 - x) Product[1/((1 - x^(6 k + 1)) (1 - x^(6 k + 5))), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 57; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k + x^(2 k)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x))*Product_{k>=0} 1/((1 - x^(6*k+1))*(1 - x^(6*k+5))).
G.f.: (1/(1 - x))*Product_{k>=0} 1/(1 - x^k + x^(2*k)).
a(n) ~ exp(sqrt(2*n)*Pi/3) * sqrt(3) / (Pi * 2^(3/4) * n^(1/4)). - Vaclav Kotesovec, May 19 2018

A382974 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n * y^k] Product_{j>=1} 1/(1 - x^j + y^j).

Original entry on oeis.org

1, -1, 1, 0, -2, 2, -1, 2, -4, 3, 1, -3, 4, -7, 5, -1, 4, -8, 10, -12, 7, 1, -5, 14, -20, 18, -19, 11, -1, 6, -18, 34, -40, 34, -30, 15, 2, -7, 22, -51, 78, -77, 56, -45, 22, -2, 9, -30, 75, -127, 157, -139, 94, -67, 30, 2, -11, 42, -105, 196, -282, 306, -239, 146, -97, 42
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2025

Keywords

Examples

			Square array begins:
   1,  -1,  0,   -1,   1,   -1,    1, ...
   1,  -2,  2,   -3,   4,   -5,    6, ...
   2,  -4,  4,   -8,  14,  -18,   22, ...
   3,  -7, 10,  -20,  34,  -51,   75, ...
   5, -12, 18,  -40,  78, -127,  196, ...
   7, -19, 34,  -77, 157, -282,  478, ...
  11, -30, 56, -139, 306, -582, 1048, ...
		

Crossrefs

Columns k=0..1 give A000041, (-1)*A000070.
Rows n=0..1 give A081362, (-1)^k * A304631(k).
Main diagonal gives A382979.
Antidiagonal sums give A000007.
Cf. A322210.
Showing 1-2 of 2 results.