cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304656 Decimal expansion of Pi*sqrt(3).

Original entry on oeis.org

5, 4, 4, 1, 3, 9, 8, 0, 9, 2, 7, 0, 2, 6, 5, 3, 5, 5, 1, 7, 8, 2, 2, 3, 4, 7, 7, 2, 9, 2, 6, 4, 6, 7, 1, 9, 6, 8, 5, 2, 1, 9, 8, 7, 4, 4, 2, 7, 8, 2, 2, 1, 7, 2, 6, 7, 0, 9, 6, 5, 4, 8, 0, 6, 1, 6, 4, 3, 6, 9, 5, 4, 3, 3, 7, 9, 0, 6, 1, 6, 5, 1, 0, 5, 2, 3, 7, 4, 9, 6, 4, 6, 3, 6, 1, 8
Offset: 1

Views

Author

Peter Luschny, May 16 2018

Keywords

Examples

			5.4413980927026535517822347729264671968521987442782217267096548061643695433790...
		

Crossrefs

Programs

  • Maple
    Pi*sqrt(3): evalf(%, 100);
  • Mathematica
    RealDigits[N[StieltjesGamma[0,1/6]-StieltjesGamma[0,5/6],99]][[1]] (* corrected by Harvey P. Dale, Oct 13 2020 *)
    RealDigits[Pi Sqrt[3],10,120][[1]] (* Harvey P. Dale, Oct 13 2020 *)
  • Python
    # Use several guard digits when computing.
    # BBP formula (9/32) P(1, 64, 6, (16, 8, 0, -2, -1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPpisqrt3(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            sixk = dec(6 * k)
            s += f * ( dec(16) / (sixk + 1) + dec(8) / (sixk + 2)
                     - dec(2)  / (sixk + 4) - dec(1) / (sixk + 5) )
            f /= g
        return (s * dec(9)) / dec(32)
    print(BBPpisqrt3(200))  # Peter Luschny, Nov 03 2023

Formula

Equals gamma(0, 1/6) - gamma(0, 5/6) where gamma(n,x) denotes the generalized Stieltjes constants.
Equals PolyGamma[0, 5/6] - PolyGamma[0, 1/6].
Equals 3*sqrt(2*zeta(2)).
Pi^2 = A304656 * A093602.
From Amiram Eldar, Aug 06 2020: (Start)
Equals Sum_{k>=0} 1/((k + 1/3)*(k + 2/3)).
Equals Integral_{x=0..oo} log(1 + 3/x^2) dx. (End)
Equals (27*S - 36)/8, where S = A248682. - Peter Luschny, Jul 22 2022
From Peter Bala, Oct 26 2023: (Start)
sqrt(3)*Pi = 9/2 + 9*Sum_{n >= 1} (-1)^(n+1)/(9*n^2 - 1);
sqrt(3)*Pi = 5 + 10*Sum_{n >= 1} 1/((4*n^2 - 1)*(9*n^2 - 1)) = 43/8 + 8*Sum_{n >= 2} (-1)^n/((n^2 - 1)*(9*n^2 - 1));
sqrt(3)*Pi = 1765/324 - (80/9)*Sum_{n >= 2} 1/((n^2 - 1)*(4*n^2 - 1)*(9*n^2 - 1)).
The following two series representations for the constant
sqrt(3)*Pi = 72 * Sum_{n >= 0} (2*n + 1)/((6*n + 1)*(6*n + 3)*(6*n + 5)) and
sqrt(3)*Pi = 8192/1485 - 860160 * Sum_{n >= 0} (2*n + 3)/((6*n + 1)*(6*n + 3)*...*(6*n + 17)) appear to generalize as follows:
for k >= 0, sqrt(3)*Pi = c(k) + (-1)^k*d(k)*Sum_{n >= 0} (2*n + 2*k + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 12*k + 5)), where c(k) is a rational number approximating sqrt(3)*Pi and d(k) = (6*k + 1)! * 2^(6*k+3) / 3^(3*k-2).
The first few values of c(k) for k >= 0 are [0, 8192/1485, 11341398016/2085060285, 62809601736704/11542783997745, 889063287831973723111424/ 163388820474305231710905, ...].
The following two series representations for the constant
sqrt(3)*Pi = 256/45 - 2560*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 11)) and
sqrt(3)*Pi = 337117184/62026965 + 2018508800*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 23)) appear to generalize as follows:
for k >= 0, sqrt(3)*Pi = c(k) - (-1)^k*d(k)*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 12*k + 11)), where c(k) is a rational number approximating sqrt(3)*Pi and d(k) = (6*k + 5)! * 2^(6*k+6) / 3^(3*k+1).
The first few values of c(k) for k >= 0 are [256/45, 337117184/62026965, 1732370763874304/318357429615225, 733187044080753836032/134742553582636674675, 6361250411469779336874164224/1169047010493653932891525275, ...]. (End)
For arbitrary integer k, Pi*sqrt(3) = Sum_{n >= 0} (1/(n - k + 1/6) - 1/(n + k + 5/6)) = Sum_{n >= 0} (1/(n + k + 7/6) - 1/(n - k - 1/6)). - Peter Bala, Jul 10 2024