cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304659 a(n) = n*(n + 1)*(16*n - 1)/6.

Original entry on oeis.org

0, 5, 31, 94, 210, 395, 665, 1036, 1524, 2145, 2915, 3850, 4966, 6279, 7805, 9560, 11560, 13821, 16359, 19190, 22330, 25795, 29601, 33764, 38300, 43225, 48555, 54306, 60494, 67135, 74245, 81840, 89936, 98549, 107695, 117390, 127650, 138491, 149929, 161980, 174660, 187985
Offset: 0

Views

Author

Bruno Berselli, May 22 2018

Keywords

Crossrefs

Cf. A007742, A076455, A139273 (first differences).
First lower diagonal of the rectangular array in A213835.

Programs

  • Magma
    [n*(n+1)*(16*n-1)/6: n in [0..41]]; // Vincenzo Librandi, May 23 2018
    
  • Mathematica
    Table[n (n + 1) (16 n - 1)/6, {n, 0, 50}]
  • PARI
    concat(0, Vec(x*(5 + 11*x) / (1 - x)^4 + O(x^40))) \\ Colin Barker, May 25 2018

Formula

O.g.f.: x*(5 + 11*x)/(1 - x)^4.
E.g.f.: x*(30 + 63*x + 16*x^2)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) + a(-n) = A033429(n).
a(n) = n*A007742(n) - Sum_{k = 0..n-1} A007742(k) for n > 0.
Also, this sequence is related to A076455 by the same type of recurrence:
A076455(n) = n*a(n) - Sum_{k = 0..n-1} a(k) for n > 0.