A304685 a(n) = A000699(n) (mod 3).
1, 1, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1
Keywords
Examples
We have that A000699(5) = 248, with 248 == 2 (mod 3), and the ternary expansion of 5 is given by the tuple (1, 2), so according to the above formula we have that a(5) = 2.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
- John M. Campbell, A DFA for enumerating even-order irreducible diagrams modulo 3
- Index entries for 3-automatic sequences
Crossrefs
Cf. A000699.
Programs
-
GAP
a:=[1];; for n in [2..90] do a[n]:=(n-1)*Sum([1..n-1],i->a[i]*a[n-i]) mod 3; od; a; # Muniru A Asiru, Aug 15 2018
-
Maple
a:=proc(n) option remember; if n<=1 then 1; else add((2*i-1)*procname(i)*procname(n-i),i=1..n-1) mod 3; end if; end proc: seq(a(n), n=1..90); # Muniru A Asiru, Aug 15 2018
-
PARI
a(n) = {my(A); A = O(x) ; for( i=1, n, A = x + A * (2 * x * A' - A)); polcoeff(A, n) % 3}; \\ Michel Marcus, Jul 04 2018; after A000699
Formula
For a natural number n, we have that a(n) = 1 if the ternary expansion of n is of the form 100...0 or is of the form 11...1200...0 for an even number of ones in this latter case, allowing runs of integers to be of length 0; a(n) = 2 if the ternary expansion of n is of the form 11...1200...0 if the length of the run of ones is odd; otherwise, a(n) = 0.
Comments