A304687 Start with the multiset of prime multiplicities of n. Given a multiset, take the multiset of its multiplicities. Repeat until a constant multiset {k,k,...,k} is reached, and set a(n) to the sum of this multiset (k times the length).
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 2, 2, 2, 2
Offset: 1
Keywords
Examples
The following are examples showing the reduction of a multiset starting with the multiset of prime multiplicities of n. a(60) = 2: {1,1,2} -> {1,2} -> {1,1}. a(360) = 3: {1,2,3} -> {1,1,1}. a(1260) = 4: {1,1,2,2} -> {2,2}. a(21492921450) = 6: {1,1,2,2,3,3} -> {2,2,2}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
a:= proc(n) map(i-> i[2], ifactors(n)[2]); while nops({%[]})>1 do [coeffs(add(x^i, i=%))] od; add(i, i=%) end: seq(a(n), n=1..100); # Alois P. Heinz, May 17 2018
-
Mathematica
Table[If[n==1,0,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],!SameQ@@#&]//Total],{n,360}]