cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A304818 If n = Product_i p(y_i) where p(i) is the i-th prime number and y_i <= y_j for i < j, then a(n) = Sum_i y_i*i.

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 6, 7, 5, 9, 6, 9, 8, 10, 7, 11, 8, 12, 10, 11, 9, 14, 9, 13, 12, 15, 10, 14, 11, 15, 12, 15, 11, 17, 12, 17, 14, 18, 13, 17, 14, 18, 15, 19, 15, 20, 12, 16, 16, 21, 16, 19, 13, 22, 18, 21, 17, 21, 18, 23, 18, 21, 15, 20, 19, 24, 20, 19
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

If n > 1 is not a prime number, we have a(n) >= A056239(n) >= Omega(n) >= omega(n) >= A071625(n) >= ... >= Omicron(n) >= omicron(n) > 1, where Omega = A001222, omega = A001221, Omicron = A304687 and omicron = A304465.

Examples

			The multiset of prime indices (see A112798) of 216 is {1,1,1,2,2,2}, which becomes {1,2,3,4,4,5,5,6,6} under A304660, so a(216) = 1+2+3+4+4+5+5+6+6 = 36.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i*numtheory[pi](l[i]), i=1..nops(l)))(
                 sort(map(i-> i[1]$i[2], ifactors(n)[2]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 20 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[With[{y=primeMS[n]},Sum[y[[i]]*i,{i,Length[y]}]],{n,20}]
  • PARI
    a(n) = {my(f = factor(n), s = 0, i = 0); for (k=1, #f~, for (kk = 1, f[k, 2], i++; s += i*primepi(f[k,1]););); s;} \\ Michel Marcus, May 19 2018
    
  • PARI
    vf(n) = {my(f=factor(n), nb = bigomega(n), g = vector(nb), i = 0); for (k=1, #f~, for (kk = 1, f[k, 2], i++; g[i] = primepi(f[k,1]););); return(g);} \\ A112798
    a(n) = {my(g = vf(n)); sum(k=1, #g, k*g[k]);} \\ Michel Marcus, May 19 2018

Formula

a(n) = A056239(A304660(n)).

A304678 Numbers with weakly increasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Comments

Complement of A112769.

Examples

			12 = 2*2*3 has prime multiplicities (2,1) so is not in the sequence.
36 = 2*2*3*3 has prime multiplicities (2,2) so is in the sequence.
150 = 2*3*5*5 has prime multiplicities (1,1,2) so is in the sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (l-> (t-> andmap(i-> l[i, 2]<=l[i+1, 2],
            [$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
    select(q, [$1..120])[];  # Alois P. Heinz, Nov 11 2019
  • Mathematica
    Select[Range[200],OrderedQ[FactorInteger[#][[All,2]]]&]
    Select[Range[90],Min[Differences[FactorInteger[#][[;;,2]]]]>=0&] (* Harvey P. Dale, Jan 28 2024 *)
  • PARI
    isok(n) = my(vm = factor(n)[,2]); vm == vecsort(vm); \\ Michel Marcus, May 17 2018

A305563 Number of reducible integer partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 7, 15, 16, 27, 30, 56, 56, 100, 105, 157, 188, 287, 303, 470, 524, 724, 850, 1197, 1339, 1856, 2135, 2814, 3305, 4360, 4951, 6532, 7561, 9563, 11195, 14165, 16328, 20631, 23866, 29471, 34320, 42336, 48672, 59872, 69139, 83625, 96911, 117153
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Comments

A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is reducible if either m is of size 1 or gcd(m_1, ..., m_k) = 1 and the multiset {y_1, ..., y_k} is also reducible.

Examples

			The a(6) = 7 reducible integer partitions are (6), (51), (411), (321), (3111), (21111), (111111). Missing from this list are (42), (33), (222), (2211).
		

Crossrefs

Programs

  • Mathematica
    ptnredQ[y_]:=Or[Length[y]==1,And[GCD@@y==1,ptnredQ[Sort[Length/@Split[y],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],ptnredQ]],{n,20}]

A317246 Heinz numbers of supernormal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 1024, 1350, 1500, 2048, 2250, 2310, 2520, 3780, 4096, 4200, 5880, 8192, 9450, 10500, 12600, 13230, 15750, 16384, 17640, 18900, 20580, 26460, 29400, 30030
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2018

Keywords

Comments

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

Examples

			Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
    Select[Range[10000],supnrm[primeMS[#]]&]

A305732 Heinz numbers of reducible integer partitions. Numbers n > 1 that are prime or whose prime indices are relatively prime and such that A181819(n) is already in the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n. A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is reducible if either m is of size 1 or gcd(m_1,...,m_k) = 1 and the multiset {y_1,...,y_k} is also reducible.

Examples

			60 has relatively prime prime indices {1,1,2,3} with multiplicities {1,1,2} corresponding to A181819(90) = 12. 12 has relatively prime prime indices {1,1,2} with multiplicities {1,2} corresponding to A181819(12) = 6. 6 has relatively prime prime indices {1,2} with multiplicities {1,1} corresponding to A181819(6) = 4. 4 has relatively prime prime indices {1,1} with multiplicities {2} corresponding to A181819(4) = 3. 3 is prime, so we conclude that 60 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    rdzQ[n_]:=And[n>1,Or[PrimeQ[n],And[rdzQ[Times@@Prime/@FactorInteger[n][[All,2]]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1]]];
    Select[Range[50],rdzQ]

A317589 Heinz numbers of uniformly normal integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 150, 151, 157, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Select[Range[1000],uninrmQ[primeMS[#]]&]

A317590 Heinz numbers of integer partitions that are not uniformly normal.

Original entry on oeis.org

10, 14, 15, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Examples

			Sequence of all non-uniformly normal integer partitions begins: (31), (41), (32), (311), (42), (51), (2111), (61), (411), (52), (71), (43), (81), (62), (3111), (421), (511), (322), (91), (21111), (331).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Select[Range[1000],!uninrmQ[primeMS[#]]&]
Showing 1-7 of 7 results.