cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A317710 Uniform tree numbers. Matula-Goebel numbers of uniform rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 77, 78, 79, 81, 82, 83, 85, 86, 87, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],rupQ]

A317588 Number of uniformly normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 6, 3, 5, 6, 7, 5, 8, 5, 7, 10, 7, 6, 12, 7, 12, 14, 10, 11, 18, 11, 13, 16, 18, 15, 35, 16, 26, 24, 27, 26, 47, 33, 44, 48, 58, 48, 76, 63, 81, 79, 98, 94, 123, 109, 135, 131, 148, 140, 162, 149, 152, 162, 166, 175, 202, 191, 221, 232, 233
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Examples

			The a(6) = 6 uniformly normal integer partitions are (6), (33), (321), (222), (2211), (111111). Missing from this list are (51), (42), (411), (3111), (21111).
The a(21) = 14 uniformly normal integer partitions (n = 21):
  (n),
  (777),
  (654321),
  (4443321), (3333333),
  (44432211), (44333211), (44332221),
  (4432221111), (4333221111), (4332222111),
  (433322211),
  (22222221111111),
  (111111111111111111111).
		

Crossrefs

Programs

  • Mathematica
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],uninrmQ]],{n,0,30}]

A339886 Numbers whose prime indices cover an interval of positive integers starting with 2.

Original entry on oeis.org

1, 3, 9, 15, 27, 45, 75, 81, 105, 135, 225, 243, 315, 375, 405, 525, 675, 729, 735, 945, 1125, 1155, 1215, 1575, 1875, 2025, 2187, 2205, 2625, 2835, 3375, 3465, 3645, 3675, 4725, 5145, 5625, 5775, 6075, 6561, 6615, 7875, 8085, 8505, 9375, 10125, 10395, 10935
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    9: {2,2}
   15: {2,3}
   27: {2,2,2}
   45: {2,2,3}
   75: {2,3,3}
   81: {2,2,2,2}
  105: {2,3,4}
  135: {2,2,2,3}
  225: {2,2,3,3}
  243: {2,2,2,2,2}
  315: {2,2,3,4}
  375: {2,3,3,3}
  405: {2,2,2,2,3}
  525: {2,3,3,4}
  675: {2,2,2,3,3}
  729: {2,2,2,2,2,2}
  735: {2,3,4,4}
  945: {2,2,2,3,4}
		

Crossrefs

The version starting at 1 is A055932.
The partitions with these Heinz numbers are counted by A264396.
Positions of 1's in A339662.
A000009 counts partitions covering an initial interval.
A000070 counts partitions with a selected part.
A016945 lists numbers with smallest prime index 2.
A034296 counts gap-free (or flat) partitions.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A107428 counts gap-free compositions (initial: A107429).
A286469 and A286470 give greatest difference for Heinz numbers.
A325240 lists numbers with smallest prime multiplicity 2.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[100],normQ[primeMS[#]-1]&]

A317590 Heinz numbers of integer partitions that are not uniformly normal.

Original entry on oeis.org

10, 14, 15, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Examples

			Sequence of all non-uniformly normal integer partitions begins: (31), (41), (32), (311), (42), (51), (2111), (61), (411), (52), (71), (43), (81), (62), (3111), (421), (511), (322), (91), (21111), (331).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Select[Range[1000],!uninrmQ[primeMS[#]]&]

A325372 Totally abnormal numbers. Heinz numbers of totally abnormal integer partitions.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 196, 197, 199, 211, 223, 225, 227
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number n is totally abnormal iff (1) the prime indices of n do not cover an initial interval of positive integers, and either (2a) n is prime, or (2b) the prime exponents (or prime signature) of n forms a totally abnormal integer partition, or, equivalently to (2b), A181819(n) is totally abnormal.
The enumeration of totally abnormal integer partitions by sum is given by A325332.

Examples

			The sequence of terms together with their prime indices are the following. See also the example at A325373.
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
   59: {17}
		

Crossrefs

Cf. A055932, A056239, A112798, A181819, A317089, A317090, A317246 (supernormal), A317492 (fully normal), A317589 (uniformly normal), A319151, A325332, A325373.

Programs

  • Mathematica
    normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
    totabnQ[n_]:=And[!normQ[n],PrimeQ[n]||totabnQ[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]];
    Select[Range[100],totabnQ]

A325332 Number of totally abnormal integer partitions of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 5, 10, 2, 16, 4, 21, 15, 24, 17, 49, 29, 53, 53, 84, 65, 121, 92, 148, 141, 186, 179, 280, 223, 317, 318, 428, 387, 576, 512, 700, 734, 899, 900, 1260, 1207, 1551, 1668, 2041, 2109, 2748, 2795, 3463, 3775, 4446
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers. A multiset is totally abnormal if it is not normal and either it is a singleton or its multiplicities form a totally abnormal multiset.
The Heinz numbers of these partitions are given by A325372.

Examples

			The a(2) = 1 through a(12) = 8 totally abnormal partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)   (C)
            (22)       (33)        (44)    (333)  (55)           (66)
                       (222)       (2222)         (3322)         (444)
                                   (3311)         (4411)         (3333)
                                                  (22222)        (4422)
                                                                 (5511)
                                                                 (222222)
                                                                 (333111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    antinrmQ[ptn_]:=!normQ[ptn]&&(Length[ptn]==1||antinrmQ[Sort[Length/@Split[ptn]]]);
    Table[Length[Select[IntegerPartitions[n],antinrmQ]],{n,0,30}]
Showing 1-6 of 6 results.