cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317711 Numbers that are not uniform tree numbers.

Original entry on oeis.org

12, 18, 20, 24, 28, 37, 40, 44, 45, 48, 50, 52, 54, 56, 60, 61, 63, 68, 71, 72, 74, 75, 76, 80, 84, 88, 89, 90, 92, 96, 98, 99, 104, 107, 108, 111, 112, 116, 117, 120, 122, 124, 126, 132, 135, 136, 140, 142, 144, 147, 148, 150, 152, 153, 156, 157, 160, 162
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  24: (ooo(o))
  28: (oo(oo))
  37: ((oo(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
  48: (oooo(o))
  50: (o((o))((o)))
  52: (oo(o(o)))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  60: (oo(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],!rupQ[#]&]

A317588 Number of uniformly normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 6, 3, 5, 6, 7, 5, 8, 5, 7, 10, 7, 6, 12, 7, 12, 14, 10, 11, 18, 11, 13, 16, 18, 15, 35, 16, 26, 24, 27, 26, 47, 33, 44, 48, 58, 48, 76, 63, 81, 79, 98, 94, 123, 109, 135, 131, 148, 140, 162, 149, 152, 162, 166, 175, 202, 191, 221, 232, 233
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Examples

			The a(6) = 6 uniformly normal integer partitions are (6), (33), (321), (222), (2211), (111111). Missing from this list are (51), (42), (411), (3111), (21111).
The a(21) = 14 uniformly normal integer partitions (n = 21):
  (n),
  (777),
  (654321),
  (4443321), (3333333),
  (44432211), (44333211), (44332221),
  (4432221111), (4333221111), (4332222111),
  (433322211),
  (22222221111111),
  (111111111111111111111).
		

Crossrefs

Programs

  • Mathematica
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],uninrmQ]],{n,0,30}]

A317589 Heinz numbers of uniformly normal integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 150, 151, 157, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Select[Range[1000],uninrmQ[primeMS[#]]&]

A317720 Numbers that are not uniform relatively prime tree numbers.

Original entry on oeis.org

9, 12, 18, 20, 21, 23, 24, 25, 27, 28, 37, 39, 40, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 60, 61, 63, 65, 68, 69, 71, 72, 73, 74, 75, 76, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 99, 103, 104, 107, 108, 111, 112, 115, 116, 117, 120, 121, 122, 124
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
   9: ((o)(o))
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  23: (((o)(o)))
  24: (ooo(o))
  25: (((o))((o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  37: ((oo(o)))
  39: ((o)(o(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],!rupQ[#]&]
Showing 1-4 of 4 results.