cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304718 Number T(n,k) of domino tilings of Ferrers-Young diagrams of partitions of 2n using exactly k horizontally oriented dominoes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 5, 5, 3, 5, 9, 14, 9, 5, 7, 18, 28, 28, 18, 7, 11, 29, 63, 62, 63, 29, 11, 15, 51, 109, 150, 150, 109, 51, 15, 22, 79, 206, 293, 380, 293, 206, 79, 22, 30, 126, 342, 590, 787, 787, 590, 342, 126, 30, 42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42
Offset: 0

Views

Author

Alois P. Heinz, May 17 2018

Keywords

Examples

			:   T(2,0) = 2   :   T(2,1) = 2       :   T(2,2) = 2         :
:   ._.  ._._.   :   .___.  ._.___.   :   .___.  .___.___.   :
:   | |  | | |   :   |___|  | |___|   :   |___|  |___|___|   :
:   |_|  |_|_|   :   | |    |_|       :   |___|              :
:   | |          :   |_|              :                      :
:   |_|          :                    :                      :
:                :                    :                      :
Triangle T(n,k) begins:
   1;
   1,   1;
   2,   2,   2;
   3,   5,   5,    3;
   5,   9,  14,    9,    5;
   7,  18,  28,   28,   18,    7;
  11,  29,  63,   62,   63,   29,   11;
  15,  51, 109,  150,  150,  109,   51,   15;
  22,  79, 206,  293,  380,  293,  206,   79,  22;
  30, 126, 342,  590,  787,  787,  590,  342, 126,  30;
  42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42;
  ...
		

Crossrefs

Row sums give A304662.
Main diagonal and column k=0 give A000041.
T(n,floor(n/2)) gives A304719.

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od; expand(
            `if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0))
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
                      +b(n-i, min(n-i, i), [l[], i])):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])):
    seq(T(n), n=0..12);
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]] ]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
    b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i - 1, l] + b[n - i, Min[n - i, i], Append[l, i]]];
    T[n_] := CoefficientList[b[2n, 2n, {}], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)

Formula

T(n,k) = T(n,n-k).