A304718 Number T(n,k) of domino tilings of Ferrers-Young diagrams of partitions of 2n using exactly k horizontally oriented dominoes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 2, 2, 2, 3, 5, 5, 3, 5, 9, 14, 9, 5, 7, 18, 28, 28, 18, 7, 11, 29, 63, 62, 63, 29, 11, 15, 51, 109, 150, 150, 109, 51, 15, 22, 79, 206, 293, 380, 293, 206, 79, 22, 30, 126, 342, 590, 787, 787, 590, 342, 126, 30, 42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42
Offset: 0
Examples
: T(2,0) = 2 : T(2,1) = 2 : T(2,2) = 2 : : ._. ._._. : .___. ._.___. : .___. .___.___. : : | | | | | : |___| | |___| : |___| |___|___| : : |_| |_|_| : | | |_| : |___| : : | | : |_| : : : |_| : : : : : : : Triangle T(n,k) begins: 1; 1, 1; 2, 2, 2; 3, 5, 5, 3; 5, 9, 14, 9, 5; 7, 18, 28, 28, 18, 7; 11, 29, 63, 62, 63, 29, 11; 15, 51, 109, 150, 150, 109, 51, 15; 22, 79, 206, 293, 380, 293, 206, 79, 22; 30, 126, 342, 590, 787, 787, 590, 342, 126, 30; 42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42; ...
Links
- Alois P. Heinz, Rows n = 0..25, flattened
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Mutilated chessboard problem
- Wikipedia, Partition (number theory)
- Wikipedia, Young tableau, Diagrams
- Index entries for sequences related to dominoes
Crossrefs
Programs
-
Maple
h:= proc(l, f) option remember; local k; if min(l[])>0 then `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f))) else for k from nops(l) while l[k]>0 by -1 do od; expand( `if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+ `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)) fi end: g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0, `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0): b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l) +b(n-i, min(n-i, i), [l[], i])): T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])): seq(T(n), n=0..12);
-
Mathematica
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]] ]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]]; g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0]; b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i - 1, l] + b[n - i, Min[n - i, i], Append[l, i]]]; T[n_] := CoefficientList[b[2n, 2n, {}], x]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
Formula
T(n,k) = T(n,n-k).