A304789 Number T(n,k) of partitions of 2n whose Ferrers-Young diagram allows exactly k different domino tilings; triangle T(n,k), n>=0, 0<=k<=A304790(n), read by rows.
0, 1, 0, 2, 0, 4, 1, 1, 6, 2, 2, 2, 10, 3, 4, 1, 2, 6, 14, 4, 6, 4, 4, 0, 2, 2, 12, 22, 5, 8, 7, 6, 2, 4, 4, 0, 0, 4, 1, 2, 25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2, 46, 44, 7, 12, 17, 14, 8, 8, 8, 0, 4, 12, 5, 6, 0, 8, 2, 0, 8, 4, 0, 4, 0, 0, 0, 2, 2, 0, 0, 4, 1, 2, 0, 0, 2, 0, 1
Offset: 0
Examples
T(2,2) = 1: 22. T(3,0) = 1: 321. T(3,1) = 6: 111111, 21111, 3111, 411, 51, 6. T(3,2) = 2: 2211, 42. T(3,3) = 2: 222, 33. T(8,36) = 1: 4444. Triangle T(n,k) begins: 0, 1; 0, 2; 0, 4, 1; 1, 6, 2, 2; 2, 10, 3, 4, 1, 2; 6, 14, 4, 6, 4, 4, 0, 2, 2; 12, 22, 5, 8, 7, 6, 2, 4, 4, 0, 0, 4, 1, 2; 25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2;
Links
- Alois P. Heinz, Rows n = 0..20, flattened
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Mutilated chessboard problem
- Wikipedia, Partition (number theory)
- Wikipedia, Young tableau, Diagrams
- Index entries for sequences related to dominoes
Crossrefs
Programs
-
Maple
h:= proc(l, f) option remember; local k; if min(l[])>0 then `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f))) else for k from nops(l) while l[k]>0 by -1 do od; `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+ `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0) fi end: g:= l-> x^`if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0, `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0): b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l) +b(n-i, min(n-i, i), [l[], i])): T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])): seq(T(n), n=0..11);