cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304789 Number T(n,k) of partitions of 2n whose Ferrers-Young diagram allows exactly k different domino tilings; triangle T(n,k), n>=0, 0<=k<=A304790(n), read by rows.

Original entry on oeis.org

0, 1, 0, 2, 0, 4, 1, 1, 6, 2, 2, 2, 10, 3, 4, 1, 2, 6, 14, 4, 6, 4, 4, 0, 2, 2, 12, 22, 5, 8, 7, 6, 2, 4, 4, 0, 0, 4, 1, 2, 25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2, 46, 44, 7, 12, 17, 14, 8, 8, 8, 0, 4, 12, 5, 6, 0, 8, 2, 0, 8, 4, 0, 4, 0, 0, 0, 2, 2, 0, 0, 4, 1, 2, 0, 0, 2, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 18 2018

Keywords

Examples

			T(2,2) = 1: 22.
T(3,0) = 1: 321.
T(3,1) = 6: 111111, 21111, 3111, 411, 51, 6.
T(3,2) = 2: 2211, 42.
T(3,3) = 2: 222, 33.
T(8,36) = 1: 4444.
Triangle T(n,k) begins:
   0,  1;
   0,  2;
   0,  4, 1;
   1,  6, 2,  2;
   2, 10, 3,  4,  1,  2;
   6, 14, 4,  6,  4,  4, 0, 2, 2;
  12, 22, 5,  8,  7,  6, 2, 4, 4, 0, 0, 4, 1, 2;
  25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2;
		

Crossrefs

Columns k=0-1 give: A304710, A139582(n) = 2*A000041(n) for n>0.
Row sums give A058696(n) or A000041(2n).

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> x^`if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
              `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
                      +b(n-i, min(n-i, i), [l[], i])):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])):
    seq(T(n), n=0..11);

Formula

Sum_{k>0} k * T(n,k) = A304662(n).
T(n,A304790(n)) = 1 for n in { A001105 }.
Sum_{k>=0} T(n,k) = A058696(n) = A000041(2n).
Sum_{k>=1} T(n,k) = A000712(n).
Sum_{k>=2} T(n,k) = A048574(n) = A052837(n).