A304662
Total number of domino tilings of Ferrers-Young diagrams summed over all partitions of 2n.
Original entry on oeis.org
1, 2, 6, 16, 42, 106, 268, 650, 1580, 3750, 8862, 20598, 47776, 109248, 248966, 562630, 1264780, 2823958, 6282198, 13884820, 30590124, 67051982, 146463790, 318588916, 690882926, 1492592450, 3215372064, 6904561416, 14786529836, 31574656096, 67261524262
Offset: 0
a(2) = 6:
._. .___. ._._. .___. ._.___. .___.___.
| | |___| | | | |___| | |___| |___|___|
|_| | | |_|_| |___| |_|
| | |_|
|_|
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Mutilated chessboard problem
- Wikipedia, Partition (number theory)
- Wikipedia, Young tableau, Diagrams
- Gus Wiseman, All 42 domino tilings of integer partitions of 8.
- Gus Wiseman, All 106 domino tilings of integer partitions of 10.
- Index entries for sequences related to dominoes
-
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od;
`if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
fi
end:
g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
`if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
a:= n-> b(2*n$2, []):
seq(a(n), n=0..12);
-
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l]>0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]]-1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f]>0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k>1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k-1 -> 1}], f], 0]]];
g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]];
a[n_] := b[2n, 2n, {}];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
A304710
Number of partitions of 2n whose Ferrers-Young diagram cannot be tiled with dominoes.
Original entry on oeis.org
0, 0, 0, 1, 2, 6, 12, 25, 46, 85, 146, 250, 410, 666, 1053, 1648, 2527, 3840, 5747, 8525, 12496, 18172, 26165, 37408, 53038, 74714, 104502, 145315, 200808, 276030, 377339, 513342, 694925, 936590, 1256670, 1679310, 2234994, 2963430, 3914701, 5153434, 6760937
Offset: 0
a(3) = 1: the Ferrers-Young diagram of 321 cannot be tiled with dominoes because the numbers of white and black squares (when colored like a chessboard) are different but each domino covers exactly one white and one black square:
._____.
|_|X|_|
|X|_|
|_|
.
a(4) = 2: 32111, 521.
a(5) = 6: 3211111, 32221, 4321, 52111, 541, 721.
a(6) = 12: 321111111, 3222111, 33321, 432111, 5211111, 52221, 54111, 543, 6321, 72111, 741, 921.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Mutilated chessboard problem
- Wikipedia, Partition (number theory)
- Wikipedia, Young tableau, Diagrams
- Index entries for sequences related to dominoes
-
b:= proc(n, i, p, c) option remember; `if`(n=0, `if`(c=0, 0, 1),
`if`(i<1, 0, b(n, i-1, p, c)+b(n-i, min(n-i, i), -p, c+
`if`(i::odd, p, 0))))
end:
a:= n-> b(2*n$2, 1, 0):
seq(a(n), n=0..50);
# second Maple program:
a:= n-> (p-> p(2*n)-add(p(j)*p(n-j), j=0..n))(combinat[numbpart]):
seq(a(n), n=0..50);
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(
numtheory[sigma](j)*b(n-j, k), j=1..n)*k/n)
end:
a:= n-> b(2*n, 1)-b(n, 2):
seq(a(n), n=0..50);
-
b[n_, i_, p_, c_] := b[n, i, p, c] = If[n == 0, If[c == 0, 0, 1], If[i < 1, 0, b[n, i - 1, p, c] + b[n - i, Min[n - i, i], -p, c + If[OddQ[i], p, 0]]]];
a[n_] := b[2n, 2n, 1, 0];
Table[a[n], {n, 0, 50}]
(* second program: *)
a[n_] := PartitionsP[2n] - Sum[PartitionsP[j]* PartitionsP[n - j], {j, 0, n}];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)
A052837
Number of partitions of 2n whose Ferrers-Young diagram allows more than one different domino tiling.
Original entry on oeis.org
0, 0, 1, 4, 10, 22, 43, 80, 141, 240, 397, 640, 1011, 1568, 2395, 3604, 5360, 7876, 11460, 16510, 23588, 33418, 47006, 65640, 91085, 125596, 172215, 234820, 318579, 430060, 577920, 773130, 1030007, 1366644, 1806445, 2378892, 3121835, 4082796, 5322360, 6916360
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
# second Maple program:
a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]):
seq(a(n), n=0..40); # Alois P. Heinz, May 26 2018
-
a[n_] := If[n <= 1, 0, With[{pp = Array[PartitionsP, n-1]},
First[ListConvolve[pp, pp]]]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 30 2025 *)
A304790
The maximal number of different domino tilings allowed by the Ferrers-Young diagram of a single partition of 2n.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 13, 21, 36, 55, 95, 149, 281, 430, 781, 1211, 2245, 3456, 6728, 10092, 18061, 31529, 51378, 85659, 167089, 252748, 431819, 817991, 1292697
Offset: 0
a(11) = 149 different domino tilings are possible for 444442 and 6655.
a(18) = 6728 different domino tilings are possible for 666666.
-
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od;
`if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
fi
end:
g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
`if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), max(b(n, i-1, l),
b(n-i, min(n-i, i), [l[], i]))):
a:= n-> b(2*n$2, []):
seq(a(n), n=0..15);
-
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[# - 1&, l[[1 ;; f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0 , k--]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
g[l_] := If[Sum[If[OddQ@l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], Max[b[n, i - 1, l], b[n - i, Min[n - i, i], Append[l, i]]]];
a[n_] := b[2n, 2n, {}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments