cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A304662 Total number of domino tilings of Ferrers-Young diagrams summed over all partitions of 2n.

Original entry on oeis.org

1, 2, 6, 16, 42, 106, 268, 650, 1580, 3750, 8862, 20598, 47776, 109248, 248966, 562630, 1264780, 2823958, 6282198, 13884820, 30590124, 67051982, 146463790, 318588916, 690882926, 1492592450, 3215372064, 6904561416, 14786529836, 31574656096, 67261524262
Offset: 0

Views

Author

Alois P. Heinz, May 16 2018

Keywords

Examples

			a(2) = 6:
._.  .___.  ._._.  .___.  ._.___.  .___.___.
| |  |___|  | | |  |___|  | |___|  |___|___|
|_|  | |    |_|_|  |___|  |_|
| |  |_|
|_|
		

Crossrefs

Row sums of A304718.
Bisection (even part) of A304680.

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
                      +b(n-i, min(n-i, i), [l[], i])):
    a:= n-> b(2*n$2, []):
    seq(a(n), n=0..12);
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l]>0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]]-1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f]>0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k>1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k-1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
    b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]];
    a[n_] := b[2n, 2n, {}];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..A304790(n)} k * A304789(n,k).
a(n) = Sum_{k=0..n} A304718(n,k).
a(n) = A296625(n) for n < 7.

A304710 Number of partitions of 2n whose Ferrers-Young diagram cannot be tiled with dominoes.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 25, 46, 85, 146, 250, 410, 666, 1053, 1648, 2527, 3840, 5747, 8525, 12496, 18172, 26165, 37408, 53038, 74714, 104502, 145315, 200808, 276030, 377339, 513342, 694925, 936590, 1256670, 1679310, 2234994, 2963430, 3914701, 5153434, 6760937
Offset: 0

Views

Author

Alois P. Heinz, May 17 2018

Keywords

Comments

Also the number of partitions of 2n where the number of odd parts in even positions differs from the number of odd parts in odd positions.

Examples

			a(3) = 1: the Ferrers-Young diagram of 321 cannot be tiled with dominoes because the numbers of white and black squares (when colored like a chessboard) are different but each domino covers exactly one white and one black square:
   ._____.
   |_|X|_|
   |X|_|
   |_|
.
a(4) = 2: 32111, 521.
a(5) = 6: 3211111, 32221, 4321, 52111, 541, 721.
a(6) = 12: 321111111, 3222111, 33321, 432111, 5211111, 52221, 54111, 543, 6321, 72111, 741, 921.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, c) option remember; `if`(n=0, `if`(c=0, 0, 1),
          `if`(i<1, 0, b(n, i-1, p, c)+b(n-i, min(n-i, i), -p, c+
          `if`(i::odd, p, 0))))
        end:
    a:= n-> b(2*n$2, 1, 0):
    seq(a(n), n=0..50);
    # second Maple program:
    a:= n-> (p-> p(2*n)-add(p(j)*p(n-j), j=0..n))(combinat[numbpart]):
    seq(a(n), n=0..50);
    # third Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          numtheory[sigma](j)*b(n-j, k), j=1..n)*k/n)
        end:
    a:= n-> b(2*n, 1)-b(n, 2):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, p_, c_] := b[n, i, p, c] = If[n == 0, If[c == 0, 0, 1], If[i < 1, 0, b[n, i - 1, p, c] + b[n - i, Min[n - i, i], -p, c + If[OddQ[i], p, 0]]]];
    a[n_] := b[2n, 2n, 1, 0];
    Table[a[n], {n, 0, 50}]
    (* second program: *)
    a[n_] := PartitionsP[2n] - Sum[PartitionsP[j]* PartitionsP[n - j], {j, 0, n}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)

Formula

a(n) = A058696(n) - A000712(n) = A000041(2*n) - A000712(n).
a(n) = A144064(2*n,1) - A144064(n,2).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n) * (1 - 2/(3^(1/4)*n^(1/4)) - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) / sqrt(n) + (Pi/(6*3^(3/4)) + 15*3^(1/4)/(8*Pi)) / n^(3/4)). - Vaclav Kotesovec, May 25 2018

A052837 Number of partitions of 2n whose Ferrers-Young diagram allows more than one different domino tiling.

Original entry on oeis.org

0, 0, 1, 4, 10, 22, 43, 80, 141, 240, 397, 640, 1011, 1568, 2395, 3604, 5360, 7876, 11460, 16510, 23588, 33418, 47006, 65640, 91085, 125596, 172215, 234820, 318579, 430060, 577920, 773130, 1030007, 1366644, 1806445, 2378892, 3121835, 4082796, 5322360, 6916360
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The original name was: A simple grammar.

Crossrefs

Essentially the same as A048574.

Programs

  • Maple
    spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]):
    seq(a(n), n=0..40);  # Alois P. Heinz, May 26 2018
  • Mathematica
    a[n_] := If[n <= 1, 0, With[{pp = Array[PartitionsP, n-1]},
       First[ListConvolve[pp, pp]]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 30 2025 *)

Formula

G.f.: (exp(Sum_{j>=1} -x^j/((x^j-1)*j) )-1)^2.
a(n) = Sum_{k>=2} A304789(n,k). - Alois P. Heinz, May 26 2018

Extensions

More terms from Franklin T. Adams-Watters, Feb 08 2006
New name from Alois P. Heinz, May 26 2018

A304790 The maximal number of different domino tilings allowed by the Ferrers-Young diagram of a single partition of 2n.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 36, 55, 95, 149, 281, 430, 781, 1211, 2245, 3456, 6728, 10092, 18061, 31529, 51378, 85659, 167089, 252748, 431819, 817991, 1292697
Offset: 0

Views

Author

Alois P. Heinz, May 18 2018

Keywords

Examples

			a(11) = 149 different domino tilings are possible for 444442 and 6655.
a(18) = 6728 different domino tilings are possible for 666666.
		

Crossrefs

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), max(b(n, i-1, l),
                       b(n-i, min(n-i, i), [l[], i]))):
    a:= n-> b(2*n$2, []):
    seq(a(n), n=0..15);
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[# - 1&, l[[1 ;; f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0 , k--]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ@l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
    b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], Max[b[n, i - 1, l], b[n - i, Min[n - i, i], Append[l, i]]]];
    a[n_] := b[2n, 2n, {}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)

Formula

a(n) = max { k : A304789(n,k) > 0 }.
a(A001105(n)) = A004003(n).
a(n) = A000045(n+1) for n < 8.
Showing 1-4 of 4 results.