cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304793 Number of distinct positive subset-sums of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 5, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 6, 1, 3, 3, 6, 1, 7, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 7, 1, 3, 4, 6, 3, 7, 1, 5, 3, 6, 1, 7, 1, 3, 5, 5, 3, 7, 1, 7, 4, 3, 1, 8, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 7, 1, 5, 5, 8, 1, 7, 1, 7, 7
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

A positive integer n is a positive subset-sum of an integer partition y if there exists a submultiset of y with sum n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
a(n) <= A000005(n).
One less than the number of distinct values obtained when A056239 is applied to all divisors of n. - Antti Karttunen, Jul 01 2018

Examples

			The positive subset-sums of (4,3,1) are {1, 3, 4, 5, 7, 8} so a(70) = 6.
The positive subset-sums of (5,1,1,1) are {1, 2, 3, 5, 6, 7, 8} so a(88) = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    v056239 = vector(up_to,n,A056239(n));
    A304793(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s = v056239[d]), mapput(m,s,s); k++)); (k-1); }; \\ Antti Karttunen, Jul 01 2018

Extensions

More terms from Antti Karttunen, Jul 01 2018