cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A299701 Number of distinct subset-sums of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 4, 6, 2, 7, 2, 6, 4, 4, 4, 7, 2, 4, 4, 7, 2, 8, 2, 6, 6, 4, 2, 7, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 5, 7, 4, 8, 2, 6, 4, 7, 2, 8, 2, 4, 6, 6, 4, 8, 2, 8, 5, 4, 2, 9, 4, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2018

Keywords

Comments

An integer n is a subset-sum of an integer partition y if there exists a submultiset of y with sum n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Position of first appearance of n appears to be A259941(n-1) = least Heinz number of a complete partition of n-1. - Gus Wiseman, Nov 16 2023

Examples

			The subset-sums of (5,1,1,1) are {0, 1, 2, 3, 5, 6, 7, 8} so a(88) = 8.
The subset-sums of (4,3,1) are {0, 1, 3, 4, 5, 7, 8} so a(70) = 7.
		

Crossrefs

Positions of first appearances are A259941.
The triangle for this rank statistic is A365658.
The semi version is A366739, sum A366738, strict A366741.

Programs

  • Mathematica
    Table[Length[Union[Total/@Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,100}]

Formula

a(n) <= A000005(n) and a(n) = A000005(n) iff n is the Heinz number of a knapsack partition (A299702).

Extensions

Comment corrected by Gus Wiseman, Aug 09 2024

A304792 Number of subset-sums of integer partitions of n.

Original entry on oeis.org

1, 2, 5, 10, 19, 34, 58, 96, 152, 240, 361, 548, 795, 1164, 1647, 2354, 3243, 4534, 6150, 8420, 11240, 15156, 19938, 26514, 34513, 45260, 58298, 75704, 96515, 124064, 157072, 199894, 251097, 317278, 395625, 496184, 615229, 765836, 944045, 1168792, 1432439
Offset: 0

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

For a multiset p of positive integers summing to n, a pair (t,p) is defined to be a subset sum if there exists a submultiset of p summing to t. This sequence is dominated by A122768 + A000041 (number of submultisets of integer partitions of n).

Examples

			The a(4)=19 subset sums are (0,4), (4,4), (0,31), (1,31), (3,31), (4,31), (0,22), (2,22), (4,22), (0,211), (1,211), (2,211), (3,211), (4,211), (0,1111), (1,1111), (2,1111), (3,1111), (4,1111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, s) option remember; `if`(n=0, nops(s),
         `if`(i<1, 0, b(n, i-1, s)+b(n-i, min(n-i, i),
          map(x-> [x, x+i][], s))))
        end:
    a:= n-> b(n$2, {0}):
    seq(a(n), n=0..40);  # Alois P. Heinz, May 18 2018
  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#]]]&/@IntegerPartitions[n]],{n,15}]
    (* Second program: *)
    b[n_, i_, s_] := b[n, i, s] = If[n == 0, Length[s],
         If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[n - i, i],
         {#, # + i}& /@ s // Flatten // Union]]];
    a[n_] := b[n, n, {0}];
    a /@ Range[0, 40] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A304792_T(n,i,s,l):
        if n==0: return l
        if i<1: return 0
        return A304792_T(n,i-1,s,l)+A304792_T(n-i,min(n-i,i),(t:=tuple(sorted(set(s+tuple(x+i for x in s))))),len(t))
    def A304792(n): return A304792_T(n,n,(0,),1) # Chai Wah Wu, Sep 25 2023, after Alois P. Heinz

Formula

a(n) = A276024(n) + A000041(n).

A365830 Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

First differs from A325798 in lacking 156.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The complement (complete partitions) is A325781.

Examples

			The terms together with their prime indices begin:
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are:
   0: ()
   1: (1)
   2: (2)  or (11)
   3: (12)
   4: (112)
   6: (6)
   7: (16)
   8: (26) or (116)
   9: (126)
  10: (1126)
But 5 is missing, so 156 is in the sequence.
		

Crossrefs

For prime indices instead of sums we have A080259, complement of A055932.
The complement is A325781, counted by A126796, strict A188431.
Positions of nonzero terms in A325799, complement A304793.
These partitions are counted by A365924, strict A365831.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640
A299701 counts distinct subset-sums of prime indices.
A365918 counts distinct non-subset-sums of partitions, strict A365922.
A365923 counts partitions by distinct non-subset-sums, strict A365545.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Select[Range[100],Length[nmz[prix[#]]]>0&]

A347460 Number of distinct possible alternating products of factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
  1  4  8    12   24   30    36   48    60    120
     1  2    3    6    10/3  9    12    15    30
        1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
             1/3  2/3  3/10  1    3     15/4  15/2
                  3/8  2/15  4/9  3/4   12/5  24/5
                  1/6        1/4  1/3   3/5   10/3
                             1/9  3/16  5/12  5/6
                                  1/12  4/15  8/15
                                        3/20  3/10
                                        1/15  5/24
                                              2/15
                                              3/40
                                              1/30
		

Crossrefs

Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The version for partitions (not factorizations) is A347461, reverse A347462.
The odd-length case is A347708.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A292886 counts knapsack factorizations, by sum A293627.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@facs[n]]],{n,100}]

A301957 Number of distinct subset-products of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 5, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2018

Keywords

Comments

A subset-product of an integer partition y is a product of some submultiset of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A003963 is applied to all divisors of n. - Antti Karttunen, Sep 05 2018

Examples

			The distinct subset-products of (4,2,1,1) are 1, 2, 4, and 8, so a(84) = 4.
The distinct subset-products of (6,3,2) are 1, 2, 3, 6, 12, 18, and 36, so a(195) = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,Length[Union[Times@@@Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A003963(n) = { n=factor(n); n[, 1]=apply(primepi, n[, 1]); factorback(n) }; \\ From A003963
    v003963 = vector(up_to,n,A003963(n));
    A301957(n) = { my(m=Map(),s,k=0,c); fordiv(n,d,if(!mapisdefined(m,s = v003963[d],&c), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 05 2018

Extensions

More terms from Antti Karttunen, Sep 05 2018

A316314 Number of distinct nonempty-subset-averages of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 5, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 8, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 7, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 8, 3, 3, 3, 5, 1, 7, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5, 1, 7, 1, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 29 2018

Keywords

Comments

A rational number q is a nonempty-subset-average of an integer partition y if there exists a nonempty submultiset of y with average q.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(42) = 7 subset-averages of (4,2,1) are 1, 3/2, 2, 7/3, 5/2, 3, 4.
The a(72) = 7 subset-averages of (2,2,1,1,1) are 1, 5/4, 4/3, 7/5, 3/2, 5/3, 2.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Mean/@Rest[Subsets[primeMS[n]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    v056239 = vector(up_to,n,A056239(n));
    A316314(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s = v056239[d]/bigomega(d)), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A316398(n) - 1.

Extensions

More terms from Antti Karttunen, Sep 23 2018

A325792 Positive integers with as many proper divisors as the sum of their prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 56, 64, 100, 128, 162, 176, 204, 234, 256, 260, 294, 308, 315, 350, 392, 416, 486, 500, 512, 690, 696, 798, 920, 1024, 1026, 1064, 1088, 1116, 1122, 1190, 1365, 1430, 1458, 1496, 1755, 1936, 1968, 2025, 2048, 2058, 2079
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from A325780 in having 204.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The term 42 is in the sequence because it has 7 proper divisors (1, 2, 3, 6, 7, 14, 21) and its sum of prime indices is also 1 + 2 + 4 = 7.
The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
     8: {1,1,1}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    32: {1,1,1,1,1}
    42: {1,2,4}
    54: {1,2,2,2}
    56: {1,1,1,4}
    64: {1,1,1,1,1,1}
   100: {1,1,3,3}
   128: {1,1,1,1,1,1,1}
   162: {1,2,2,2,2}
   176: {1,1,1,1,5}
   204: {1,1,2,7}
   234: {1,2,2,6}
   256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Positions of 1's in A325794.
Heinz numbers of the partitions counted by A325828.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]-1==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A347461 Number of distinct possible alternating products of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 12, 16, 19, 23, 27, 34, 41, 49, 57, 67, 78, 91, 106, 125, 147, 166, 187, 215, 245, 277, 317, 357, 405, 460, 524, 592, 666, 740, 829, 928, 1032, 1147, 1273, 1399, 1555, 1713, 1892, 2087, 2298, 2523, 2783, 3070, 3383, 3724, 4104, 4504
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			Partitions representing each of the a(7) = 10 alternating products are:
     (7) -> 7
    (61) -> 6
    (52) -> 5/2
   (511) -> 5
    (43) -> 4/3
   (421) -> 2
  (4111) -> 4
   (331) -> 1
   (322) -> 3
  (3211) -> 3/2
		

Crossrefs

The version for alternating sum is A004526.
Counting only integers gives A028310, reverse A347707.
The version for factorizations is A347460, reverse A038548.
The reverse version is A347462.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A122768 counts distinct submultisets of partitions.
A126796 counts complete partitions.
A293627 counts knapsack factorizations by sum.
A301957 counts distinct subset-products of prime indices.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A304793 counts distinct positive subset-sums of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@IntegerPartitions[n]]],{n,0,30}]

A325799 Sum of the prime indices of n minus the number of distinct positive subset-sums of the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 2, 1, 4, 0, 5, 2, 2, 0, 6, 0, 7, 0, 3, 3, 8, 0, 4, 4, 3, 1, 9, 0, 10, 0, 4, 5, 4, 0, 11, 6, 5, 0, 12, 0, 13, 2, 2, 7, 14, 0, 6, 2, 6, 3, 15, 0, 5, 0, 7, 8, 16, 0, 17, 9, 4, 0, 6, 1, 18, 4, 8, 2, 19, 0, 20, 10, 3, 5, 6, 2, 21, 0, 4, 11
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A positive subset-sum of an integer partition is any sum of a nonempty submultiset of it.

Examples

			The prime indices of 21 are {2,4}, with positive subset-sums {2,4,6}, so a(21) = 6 - 3 = 3.
		

Crossrefs

Positions of 1's are A325800.
Positions of nonzero terms are A325798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]];
    Table[hwt[n]-Length[Union[hwt/@Rest[Divisors[n]]]],{n,30}]

Formula

a(n) = A056239(n) - A304793(n).

A347462 Number of distinct possible reverse-alternating products of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 13, 17, 22, 28, 33, 42, 51, 59, 69, 84, 100, 117, 137, 163, 191, 222, 256, 290, 332, 378, 429, 489, 564, 643, 729, 819, 929, 1040, 1167, 1313, 1473, 1647, 1845, 2045, 2272, 2521, 2785, 3076, 3398, 3744, 4115, 4548, 5010, 5524, 6086
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			Partitions representing each of the a(7) = 11 reverse-alternating products:
     (7) -> 7
    (61) -> 1/6
    (52) -> 2/5
   (511) -> 5
    (43) -> 3/4
   (421) -> 2
  (4111) -> 1/4
   (331) -> 1
   (322) -> 3
  (3211) -> 2/3
  (2221) -> 1/2
		

Crossrefs

The version for non-reverse alternating sum instead of product is A004526.
Counting only integers gives A028310, non-reverse A347707.
The version for factorizations is A038548, non-reverse A347460.
The non-reverse version is A347461.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A122768 counts distinct submultisets of partitions.
A126796 counts complete partitions.
A293627 counts knapsack factorizations by sum.
A301957 counts distinct subset-products of prime indices.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A304793 counts distinct positive subset-sums of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[revaltprod/@IntegerPartitions[n]]],{n,0,30}]
Showing 1-10 of 34 results. Next