A299702 Heinz numbers of knapsack partitions.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F,t,S,i,r; F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]); S:= {0}: r:= 1; for t in F do S:= map(s -> seq(s + i*t[1],i=0..t[2]),S); r:= r*(t[2]+1); if nops(S) <> r then return false fi od; true end proc: select(filter, [$1..100]); # Robert Israel, Oct 30 2024
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],UnsameQ@@Plus@@@Union[Rest@Subsets[primeMS[#]]]&]
Comments