cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304797 Expansion of x * (d/dx) Sum_{k>=0} k!*x^(k*(k+1)/2)/Product_{j=1..k} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 9, 12, 25, 66, 91, 152, 243, 570, 715, 1212, 1729, 2702, 5265, 6960, 10489, 15318, 22363, 31100, 57771, 72534, 109411, 151032, 219025, 293930, 421281, 680820, 883369, 1256010, 1727971, 2396000, 3235419, 4447506, 5894875, 9266580, 11691001, 16380470, 21774753
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Comments

Sum of all parts of all compositions (ordered partitions) of n into distinct parts.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
         `if`(k=0, `if`(n=0, 1, 0), b(n-k, k) +k*b(n-k, k-1)))
        end:
    a:= n-> n*add(b(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 18 2018
  • Mathematica
    nmax = 39; CoefficientList[Series[x D[Sum[k! x^(k (k + 1)/2)/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}], x], {x, 0, nmax}], x]

Formula

a(n) = n*A032020(n).