A304820 A co-delta function for non-perfect powers. Dirichlet inverse of A304819.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
a[n_]:=a[n]=If[n==1,1,-Sum[(-1)^PrimeOmega[d]*a[n/d],{d,Select[Rest[Divisors[n]],GCD@@FactorInteger[#][[All,2]]==1&]}]]; Table[Sum[a[d]*MoebiusMu[n/d],{d,Divisors[n]}],{n,100}]
-
PARI
A304819(n) = sumdiv(n,d,if(!ispower(d),(-1)^bigomega(d),0)); A304820(n) = if(1==n,1,-sumdiv(n,d,if(d
A304819(n/d)*A304820(d),0))); \\ Antti Karttunen, Jul 29 2018 -
PARI
A304779(n) = if(1==n,1,-sumdiv(n,d,if((d>1)&&!ispower(d),((-1)^bigomega(d))*A304779(n/d),0))); A304820(n) = sumdiv(n,d,moebius(n/d)*A304779(d)); \\ Antti Karttunen, Jul 29 2018
Extensions
More terms from Antti Karttunen, Jul 29 2018