A304833 a(n) = 3*n^2 + 38*n - 76 (n>=2).
12, 65, 124, 189, 260, 337, 420, 509, 604, 705, 812, 925, 1044, 1169, 1300, 1437, 1580, 1729, 1884, 2045, 2212, 2385, 2564, 2749, 2940, 3137, 3340, 3549, 3764, 3985, 4212, 4445, 4684, 4929, 5180, 5437, 5700, 5969, 6244, 6525, 6812, 7105, 7404, 7709, 8020, 8337, 8660, 8989, 9324, 9665, 10012, 10365, 10724, 11089
Offset: 2
References
- D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Wikipedia, Mycielskian
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A304832.
Programs
-
GAP
List([2..60], n->3*n^2+38*n-76); # Muniru A Asiru, May 20 2018
-
Maple
seq(3*n^2+38*n-76, n = 2 .. 55);
-
PARI
a(n) = 3*n^2 + 38*n - 76 \\ Felix Fröhlich, May 20 2018
-
PARI
Vec(x^2*(12 + 29*x - 35*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 21 2018
Formula
From Colin Barker, May 21 2018: (Start)
G.f.: x^2*(12 + 29*x - 35*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)
Comments