cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304873 G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).

Original entry on oeis.org

1, 0, 14, 64, 528, 1696, 11616, 33600, 169072, 525760, 2069922, 5928066, 22259874, 59321760, 193797792, 526647420, 1566376990, 4012181104, 11456306798, 28263784110, 75995086336, 184440427360, 468750673616, 1104027571108, 2730165482640, 6239956155696
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} p(k)^m * x^k / Sum_{k>=0} p(k)*x^k, then a(n, m) ~ exp(Pi*sqrt(2*(m^2 - 1)*n/3)) * ((m^2 - 1)^(m - 3/4) / (2^(2*m - 3/4) * 3^(m/2 - 1/4) * m^(2*m - 1) * n^(m - 1/4))).

Crossrefs

Cf. A054440 (m=2), A260664 (m=3).

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(3/4) * 3^(3/2) * 5^(13/4) * exp(Pi*sqrt(10*n)) / (2^22 * n^(15/4)).