cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304885 Expansion of Product_{k>=1} 1/(1-x^(3*k-2)) * Product_{k>=1} 1/(1-x^(6*k-1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 10, 12, 14, 17, 21, 25, 30, 35, 41, 49, 58, 68, 79, 92, 107, 124, 144, 166, 191, 220, 252, 289, 331, 378, 431, 490, 557, 632, 717, 812, 917, 1035, 1167, 1315, 1480, 1663, 1866, 2092, 2344, 2624, 2934, 3277, 3656, 4076, 4542, 5056
Offset: 0

Views

Author

Seiichi Manyama, May 20 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul(1/(1-x^(3*k-2)),k=1..n)*mul(1/(1-x^(6*k-1)),k=1..n), x,70),x,n),n=0..60); # Muniru A Asiru, May 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1-x^(3*k-2)) * (1-x^(6*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 21 2018 *)

Formula

G.f.: Sum_{j>=0} x^(j*(3*j-1)/2)*(Product_{k=1..j} (1-x^(6*k-4)))/(Product_{k=1..3*j} (1-x^k)).
a(n) ~ exp(Pi*sqrt(n/3)) * Pi^(2/3) / (2 * 3^(2/3) * Gamma(1/3) * n^(5/6)). - Vaclav Kotesovec, May 21 2018