cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304914 Number of trees with positive integer edge labels summing to n.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 55, 146, 415, 1212, 3653, 11246, 35346, 112750, 364714, 1193202, 3943557, 13148575, 44186841, 149536376, 509270554, 1744342614, 6005869285, 20777091355, 72192026878, 251848377631, 881865312582, 3098564357293, 10922162622233, 38614641384893
Offset: 0

Views

Author

Andrew Howroyd, May 20 2018

Keywords

Crossrefs

Row sums of A303842.
Cf. A052855.

Programs

  • Mathematica
    max = 30; g[] = 1; Do[g[x] = Exp[Sum[(g[x^k]/(1 - x^k))*(x^k/k) + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[g[x] + (g[x^2] - g[x]^2)*(x/(2*(1 - x))) + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
  • PARI
    \\ here b(n) is A052855 as series
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerT(v))); Ser(v)*(1-x)}
    seq(n)={my(g=b(n)); Vec(g + (subst(g,x,x^2) - g^2)*x/(2*(1-x)))}

Formula

G.f.: g(x) + (g(x^2) - g(x)^2)*x/(2*(1-x)) where g(x) is the g.f. of A052855.