A304914 Number of trees with positive integer edge labels summing to n.
1, 1, 2, 4, 9, 21, 55, 146, 415, 1212, 3653, 11246, 35346, 112750, 364714, 1193202, 3943557, 13148575, 44186841, 149536376, 509270554, 1744342614, 6005869285, 20777091355, 72192026878, 251848377631, 881865312582, 3098564357293, 10922162622233, 38614641384893
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
max = 30; g[] = 1; Do[g[x] = Exp[Sum[(g[x^k]/(1 - x^k))*(x^k/k) + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[g[x] + (g[x^2] - g[x]^2)*(x/(2*(1 - x))) + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
-
PARI
\\ here b(n) is A052855 as series EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerT(v))); Ser(v)*(1-x)} seq(n)={my(g=b(n)); Vec(g + (subst(g,x,x^2) - g^2)*x/(2*(1-x)))}
Formula
G.f.: g(x) + (g(x^2) - g(x)^2)*x/(2*(1-x)) where g(x) is the g.f. of A052855.