A305031 Expansion of ((1 + 2*x)/(1 - 2*x))^(3/2).
1, 6, 18, 44, 102, 228, 500, 1080, 2310, 4900, 10332, 21672, 45276, 94248, 195624, 404976, 836550, 1724580, 3549260, 7293000, 14965236, 30669496, 62783448, 128388624, 262303132, 535422888, 1092063000, 2225728400, 4533175800, 9226818000, 18769219920, 38158909920
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
Crossrefs
Programs
-
Magma
[n le 2 select 6^(n-1) else 2*(3*Self(n-1) + 2*(n-3)*Self(n-2))/(n-1): n in [1..40]]; // G. C. Greubel, Jun 07 2023
-
Mathematica
CoefficientList[Series[((1+2*x)/(1-2*x))^(3/2), {x,0,40}], x] (* G. C. Greubel, Jun 07 2023 *)
-
PARI
N=66; x='x+O('x^N); Vec(((1+2*x)/(1-2*x))^(3/2))
-
SageMath
@CachedFunction def a(n): # b = A305031 if n<2: return 6^n else: return 2*(3*a(n-1) + 2*(n-2)*a(n-2))//n [a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023
Formula
n*a(n) = 6*a(n-1) + 4*(n-2)*a(n-2) for n > 1.
a(n) ~ 2^(n + 5/2) * sqrt(n/Pi). - Vaclav Kotesovec, May 28 2018
Comments