cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305031 Expansion of ((1 + 2*x)/(1 - 2*x))^(3/2).

Original entry on oeis.org

1, 6, 18, 44, 102, 228, 500, 1080, 2310, 4900, 10332, 21672, 45276, 94248, 195624, 404976, 836550, 1724580, 3549260, 7293000, 14965236, 30669496, 62783448, 128388624, 262303132, 535422888, 1092063000, 2225728400, 4533175800, 9226818000, 18769219920, 38158909920
Offset: 0

Views

Author

Seiichi Manyama, May 24 2018

Keywords

Comments

Let ((1 + k*x)/(1 - k*x))^(m/k) = a(0) + a(1)*x + a(2)*x^2 + ... then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.

Crossrefs

((1 + 2*x)/(1 - 2*x))^(m/2): A063886 (m=1), this sequence (m=3), A241204 (m=4).

Programs

  • Magma
    [n le 2 select 6^(n-1) else 2*(3*Self(n-1) + 2*(n-3)*Self(n-2))/(n-1): n in [1..40]]; // G. C. Greubel, Jun 07 2023
    
  • Mathematica
    CoefficientList[Series[((1+2*x)/(1-2*x))^(3/2), {x,0,40}], x] (* G. C. Greubel, Jun 07 2023 *)
  • PARI
    N=66; x='x+O('x^N); Vec(((1+2*x)/(1-2*x))^(3/2))
    
  • SageMath
    @CachedFunction
    def a(n): # b = A305031
        if n<2: return 6^n
        else: return 2*(3*a(n-1) + 2*(n-2)*a(n-2))//n
    [a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

n*a(n) = 6*a(n-1) + 4*(n-2)*a(n-2) for n > 1.
a(n) ~ 2^(n + 5/2) * sqrt(n/Pi). - Vaclav Kotesovec, May 28 2018

A304940 Expansion of ((1 + 4*x)/(1 - 4*x))^(1/2).

Original entry on oeis.org

1, 4, 8, 32, 96, 384, 1280, 5120, 17920, 71680, 258048, 1032192, 3784704, 15138816, 56229888, 224919552, 843448320, 3373793280, 12745441280, 50981765120, 193730707456, 774922829824, 2958796259328, 11835185037312, 45368209309696, 181472837238784
Offset: 0

Views

Author

Seiichi Manyama, May 22 2018

Keywords

Comments

Let ((1 + k*x)/(1 - k*x))^(m/k) = a(0) + a(1)*x + a(2)*x^2 + ...
Then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.

Crossrefs

((1 + 4*x)/(1 - 4*x))^(m/4): A303537 (m=1), this sequence (m=2), A304941 (m=3), A081654 (m=4).
Cf. A063886.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(((1+4*x)/(1-4*x))^(1/2))

Formula

n*a(n) = 4*a(n-1) + 4^2*(n-2)*a(n-2) for n > 1.
a(n) = 2^n * A063886(n).

A304944 a(0) = 0, a(1) = 1 and a(n) = 6*a(n-1)/(n-1) + 16*a(n-2) for n > 1.

Original entry on oeis.org

0, 1, 6, 34, 164, 790, 3572, 16212, 71048, 312678, 1345220, 5809980, 24692600, 105305980, 443684360, 1875046120, 7848968208, 32944100998, 137210821092, 572842556332, 2376270786840, 9878362137364, 40842721771544, 169192718317336, 697620779210096
Offset: 0

Views

Author

Seiichi Manyama, May 22 2018

Keywords

Comments

Let a(0) = 0, a(1) = 1 and a(n) = 2*m*a(n-1)/(n-1) + k^2*a(n-2) for n > 1, then the g.f. is x/(2*m) * d/dx ((1 + k*x)/(1 - k*x))^(m/k).

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 2*(3*Self(n-1) + 8*(n-2)*Self(n-2))/(n-2): n in [1..40]]; // G. C. Greubel, Jun 07 2023
    
  • Mathematica
    CoefficientList[Series[x/((1-4*x)^(7/4)*(1+4*x)^(1/4)), {x,0,40}], x] (* G. C. Greubel, Jun 07 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # b = A304944
        if n<2: return n
        else: return 2*(3*a(n-1) + 8*(n-1)*a(n-2))//(n-1)
    [a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

a(n) = n*A304941(n)/6.
G.f.: x/(1-4*x)^2 * ((1-4*x)/(1+4*x))^(1/4).
Showing 1-3 of 3 results.