cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304942 Triangle read by rows: T(n,k) is the number of nonisomorphic binary n X n matrices with k 1's per column under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 11, 5, 1, 1, 7, 35, 35, 7, 1, 1, 11, 132, 410, 132, 11, 1, 1, 15, 471, 6178, 6178, 471, 15, 1, 1, 22, 1806, 122038, 594203, 122038, 1806, 22, 1, 1, 30, 7042, 2921607, 85820809, 85820809, 2921607, 7042, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 23 2018

Keywords

Examples

			Triangle begins (n >=0, k >= 0):
  1;
  1,  1;
  1,  2,    1;
  1,  3,    3,      1;
  1,  5,   11,      5,      1;
  1,  7,   35,     35,      7,      1;
  1, 11,  132,    410,    132,     11,    1;
  1, 15,  471,   6178,   6178,    471,   15,  1;
  1, 22, 1806, 122038, 594203, 122038, 1806, 22, 1;
  ...
		

Crossrefs

Columns k=1..5 are A000041, A247417, A247596, A247597, A247598.
Cf. A305027.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q,t,k)={polcoeff(prod(j=1, #q, my(g=gcd(t, q[j])); (1 + x^(q[j]/g) + O(x*x^k))^g), k)}
    Blocks(n,m,k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoeff(exp(sum(t=1, n, K(q,t,k)/t*x^t) + O(x*x^n)), n)); s/m!}
    for(n=0, 10, for(k=0, n, print1(Blocks(n,n,k), ", ")); print)