cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A318795 Array read by antidiagonals: T(n,k) is the number of inequivalent nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 4, 1, 1, 11, 10, 4, 1, 1, 14, 24, 10, 4, 1, 1, 24, 51, 33, 10, 4, 1, 1, 30, 114, 78, 33, 10, 4, 1, 1, 45, 219, 224, 91, 33, 10, 4, 1, 1, 55, 424, 549, 277, 91, 33, 10, 4, 1, 1, 76, 768, 1403, 792, 298, 91, 33, 10, 4, 1, 1, 91, 1352, 3292, 2341, 881, 298, 91, 33, 10, 4, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2018

Keywords

Examples

			Array begins:
===========================================================
n\k| 1 2  3  4  5   6   7    8    9    10     11     12
---+-------------------------------------------------------
1  | 1 1  1  1  1   1   1    1    1     1      1      1 ...
2  | 1 4  5 11 14  24  30   45   55    76     91    119 ...
3  | 1 4 10 24 51 114 219  424  768  1352   2278   3759 ...
4  | 1 4 10 33 78 224 549 1403 3292  7677  16934  36581 ...
5  | 1 4 10 33 91 277 792 2341 6654 18802  51508 138147 ...
6  | 1 4 10 33 91 298 881 2825 8791 27947  87410 272991 ...
7  | 1 4 10 33 91 298 910 2974 9655 32287 108274 367489 ...
8  | 1 4 10 33 91 298 910 3017 9886 33767 116325 410298 ...
9  | 1 4 10 33 91 298 910 3017 9945 34124 118729 424498 ...
...
		

Crossrefs

Main diagonal is A007716.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    Table[M[n-k+1, n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 12 2018, after Andrew Howroyd *)
  • PARI
    \\ see also link.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={1/prod(j=1, #q, (1-y^lcm(t,q[j]) + O(y*y^k))^gcd(t, q[j]))}
    M(m, n, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(polcoef(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n), k)); s/m!}
    for(n=1, 10, for(k=1, 12, print1(M(n, n, k), ", ")); print); \\ updated Andrew Howroyd, Mar 29 2020

Formula

T(n,k) = T(k,k) for n > k.

A331461 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 8, 4, 1, 1, 1, 7, 23, 16, 5, 1, 1, 1, 11, 66, 93, 30, 6, 1, 1, 1, 15, 212, 652, 332, 50, 7, 1, 1, 1, 22, 686, 6369, 6414, 1062, 80, 8, 1, 1, 1, 30, 2389, 79568, 226041, 56712, 3117, 120, 9, 1, 1, 1, 42, 8682, 1256425, 12848128, 7295812, 441881, 8399, 175, 10, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

A(n,k) is the number of non-isomorphic set multipartitions (multiset of sets) with k parts each part has size n.

Examples

			Array begins:
===========================================================
n\k | 0 1 2   3    4       5          6              7
----+-----------------------------------------------------
  0 | 1 1 1   1    1       1          1              1 ...
  1 | 1 1 2   3    5       7         11             15 ...
  2 | 1 1 3   8   23      66        212            686 ...
  3 | 1 1 4  16   93     652       6369          79568 ...
  4 | 1 1 5  30  332    6414     226041       12848128 ...
  5 | 1 1 6  50 1062   56712    7295812     1817321457 ...
  6 | 1 1 7  80 3117  441881  195486906   200065951078 ...
  7 | 1 1 8 120 8399 3006771 4298181107 17131523059493 ...
  ...
The A(2,3) = 8 matrices are:
  [1 0 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 1]
  [1 0 0]  [1 0 0]  [1 0 0]  [1 1 0]  [1 0 1]  [1 1 0]  [1 0 1]  [1 1 1]
  [0 1 0]  [0 1 0]  [0 1 0]  [0 0 1]  [0 1 0]  [0 0 1]  [0 1 1]
  [0 1 0]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]
  [0 0 1]  [0 0 1]
  [0 0 1]
		

Crossrefs

Programs

  • PARI
    \\ See A304942 for Blocks
    T(n,k)={Blocks(k, n*k, n)}
    { for(n=0, 7, for(k=0, 6, print1(T(n,k), ", ")); print) }

Formula

A306018(n) = Sum_{d|n} A(n/d, d).

A306018 Number of non-isomorphic set multipartitions of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 24, 16, 51, 47, 115, 57, 420, 102, 830, 879, 2962, 298, 15527, 491, 41275, 80481, 133292, 1256, 2038182, 58671, 2386862, 24061887, 23570088, 4566, 600731285, 6843, 1303320380, 14138926716, 1182784693, 1820343112, 542834549721, 21638, 31525806080
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A set multipartition of weight n is a finite multiset of finite nonempty sets whose cardinalities sum to n.
Number of distinct binary matrices with all row sums equal and total sum n, up to row and column permutations. - Andrew Howroyd, Sep 05 2018

Examples

			Non-isomorphic representatives of the a(6) = 24 set multipartitions in which all parts have the same size:
{{1,2,3,4,5,6}}
{{1,2,3},{1,2,3}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{3,4}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{1},{1},{1},{1},{1}}
{{1},{1},{1},{2},{2},{2}}
{{1},{1},{2},{2},{2},{2}}
{{1},{1},{2},{2},{3},{3}}
{{1},{2},{2},{2},{2},{2}}
{{1},{2},{2},{3},{3},{3}}
{{1},{2},{3},{3},{3},{3}}
{{1},{2},{3},{3},{4},{4}}
{{1},{2},{3},{4},{4},{4}}
{{1},{2},{3},{4},{5},{5}}
{{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

Formula

a(p) = A000041(p) + 1 for prime p. - Andrew Howroyd, Sep 06 2018
a(n) = Sum_{d|n} A331461(n/d, d). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018

A318951 Array read by rows: T(n,k) is the number of nonisomorphic n X n matrices with nonnegative integer entries and row sums k under row and column permutations, (n >= 1, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 14, 5, 1, 1, 9, 44, 53, 7, 1, 1, 12, 129, 458, 198, 11, 1, 1, 16, 316, 3411, 5929, 782, 15, 1, 1, 20, 714, 19865, 145168, 96073, 3111, 22, 1, 1, 25, 1452, 95214, 2459994, 9283247, 1863594, 12789, 30, 1, 1, 30, 2775, 383714, 30170387, 537001197, 833593500, 42430061, 53836, 42, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 05 2018

Keywords

Examples

			Array begins:
================================================================
n\k| 0  1    2       3         4            5              6
---|------------------------------------------------------------
1  | 1  1    1       1         1            1              1 ...
2  | 1  2    4       6         9           12             16 ...
3  | 1  3   14      44       129          316            714 ...
4  | 1  5   53     458      3411        19865          95214 ...
5  | 1  7  198    5929    145168      2459994       30170387 ...
6  | 1 11  782   96073   9283247    537001197    19578605324 ...
7  | 1 15 3111 1863594 833593500 189076534322 23361610029905 ...
...
		

Crossrefs

Rows 2..6 are A002620(n+2), A058389, A058390, A058391, A058392.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    Table[RowSumMats[n-k, n-k, k], {n, 1, 11}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Sep 12 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={polcoeff(1/prod(j=1, #q, my(g=gcd(t, q[j])); (1 - x^(q[j]/g) + O(x*x^k))^g), k)}
    RowSumMats(n, m, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoeff(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n)); s/m!}
    for(n=1, 8, for(k=0, 6, print1(RowSumMats(n, n, k), ", ")); print)

A247596 Number of nonisomorphic binary n X n matrices with three 1's per column under row and column permutations.

Original entry on oeis.org

1, 5, 35, 410, 6178, 122038, 2921607, 81609320, 2588949454, 91699869557, 3582942335285, 153048366545566, 7096576775166579, 355120233277118103, 19084972486216897560, 1096965038775477639368, 67192642484367187943761, 4372413334294007638726854
Offset: 3

Views

Author

Marko Riedel, Sep 21 2014

Keywords

Crossrefs

Column k=3 of A304942.
A diagonal of A305027.

Programs

  • Maple
    seq(matrix_marks(n,3), n=3..15); # Using the uploaded program to A247417
  • PARI
    \\ See A304942 for Blocks
    a(n) = Blocks(n, n, 3); \\ Andrew Howroyd, May 23 2018

Extensions

Terms a(17) and beyond from Andrew Howroyd, May 23 2018

A247417 Number of nonisomorphic binary n X n matrices with two 1's per column under row and column permutations.

Original entry on oeis.org

1, 3, 11, 35, 132, 471, 1806, 7042, 28494, 118662, 510517, 2262738, 10337474, 48625631, 235357470, 1171163995, 5986424739, 31403695142, 168913667164, 930739116386, 5249162406890, 30275048671498, 178428441191289, 1073737691984694, 6592909590432719
Offset: 2

Views

Author

Marko Riedel, Sep 21 2014

Keywords

Crossrefs

Column k=2 of A304942.

Programs

  • Maple
    Using the uploaded program the call is seq(matrix_marks(n,2), n=3..15);
  • PARI
    \\ See A304942 for Blocks
    a(n) = Blocks(n, n, 2); \\ Andrew Howroyd, May 24 2018

Extensions

Terms a(17) and beyond from Andrew Howroyd, May 23 2018

A247597 Number of nonisomorphic binary n X n matrices with four 1's per column under row and column permutations.

Original entry on oeis.org

1, 7, 132, 6178, 594203, 85820809, 16341829155, 3875736708590, 1112175913348040, 378860991866916370, 151006214911844288232, 69600017255860985666964, 36729204987785981237238642, 22003003913198378660826731007, 14851323097928973689736994569534
Offset: 4

Views

Author

Marko Riedel, Sep 21 2014

Keywords

Crossrefs

Column k=4 of A304942.

Programs

  • Maple
    seq(matrix_marks(n,4), n=3..15); # Using the uploaded program to A247417
  • PARI
    \\ See A304942 for Blocks
    a(n) = Blocks(n, n, 4); \\ Andrew Howroyd, May 24 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, May 24 2018

A247598 Number of nonisomorphic binary n X n matrices with five 1's per column under row and column permutations.

Original entry on oeis.org

1, 11, 471, 122038, 85820809, 96018336018, 146662126879117, 291352421255114277, 734102568216405642199, 2304488853198195872625924, 8882860158091727486388086786, 41519759838668575020971562079517, 232748666229847254694256869145439898, 1549417862125158239133077344950011140191
Offset: 5

Views

Author

Marko Riedel, Sep 21 2014

Keywords

Crossrefs

Column k=5 of A304942.

Programs

  • Maple
    seq(matrix_marks(n,5), n=3..15); # Using the uploaded program to A247417
  • PARI
    \\ See A304942 for Blocks
    a(n) = Blocks(n, n, 5); \\ Andrew Howroyd, May 24 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, May 24 2018

A305027 Array read by antidiagonals: T(n,m) is the number of nonisomorphic binary n X m matrices with 3 1's per column under row and column permutations (m >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 7, 5, 1, 1, 1, 4, 11, 17, 6, 1, 1, 1, 4, 14, 40, 35, 9, 1, 1, 1, 4, 15, 62, 122, 76, 11, 1, 1, 1, 4, 16, 78, 272, 410, 149, 15, 1, 1, 1, 4, 16, 87, 427, 1307, 1270, 291, 18, 1, 1, 1, 4, 16, 91, 544, 2754, 6178, 3888, 539, 23, 1
Offset: 0

Views

Author

Andrew Howroyd, May 24 2018

Keywords

Comments

Also, the number of pure 2-complexes on m nodes with n multiple 2-simplexes.

Examples

			Array begins:
========================================================
n\m| 3  4   5    6     7      8      9     10     11
---+----------------------------------------------------
0  | 1  1   1    1     1      1      1      1      1 ...
1  | 1  1   1    1     1      1      1      1      1 ...
2  | 1  2   3    4     4      4      4      4      4 ...
3  | 1  3   7   11    14     15     16     16     16 ...
4  | 1  5  17   40    62     78     87     91     92 ...
5  | 1  6  35  122   272    427    544    606    635 ...
6  | 1  9  76  410  1307   2754   4251   5343   5939 ...
7  | 1 11 149 1270  6178  18247  36455  54621  67609 ...
8  | 1 15 291 3888 28687 122038 327774 616020 891831 ...
...
		

Crossrefs

Columns m=4..7 are A001400, A014395, A050911, A050912.
A diagonal is A247596.
Cf. A050913 (infinite m), A304942.

Programs

  • PARI
    \\ See A304942 for Blocks
    for(n=1, 8, for(m=3, 11, print1(Blocks(n, m, 3), ", ")); print)

A050910 Number of pure 3-complexes on 8 unlabeled nodes with n multiple 3-simplexes.

Original entry on oeis.org

1, 1, 5, 21, 131, 940, 7902, 69025, 594203, 4856288, 37189863, 265916174, 1778005595, 11154474602, 65921168577, 368463685296, 1955231394323, 9884229508860, 47752849848446, 221109815065563, 983764137502726
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 1999

Keywords

Crossrefs

Programs

Showing 1-10 of 10 results.