cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A304942 Triangle read by rows: T(n,k) is the number of nonisomorphic binary n X n matrices with k 1's per column under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 11, 5, 1, 1, 7, 35, 35, 7, 1, 1, 11, 132, 410, 132, 11, 1, 1, 15, 471, 6178, 6178, 471, 15, 1, 1, 22, 1806, 122038, 594203, 122038, 1806, 22, 1, 1, 30, 7042, 2921607, 85820809, 85820809, 2921607, 7042, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 23 2018

Keywords

Examples

			Triangle begins (n >=0, k >= 0):
  1;
  1,  1;
  1,  2,    1;
  1,  3,    3,      1;
  1,  5,   11,      5,      1;
  1,  7,   35,     35,      7,      1;
  1, 11,  132,    410,    132,     11,    1;
  1, 15,  471,   6178,   6178,    471,   15,  1;
  1, 22, 1806, 122038, 594203, 122038, 1806, 22, 1;
  ...
		

Crossrefs

Columns k=1..5 are A000041, A247417, A247596, A247597, A247598.
Cf. A305027.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q,t,k)={polcoeff(prod(j=1, #q, my(g=gcd(t, q[j])); (1 + x^(q[j]/g) + O(x*x^k))^g), k)}
    Blocks(n,m,k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoeff(exp(sum(t=1, n, K(q,t,k)/t*x^t) + O(x*x^n)), n)); s/m!}
    for(n=0, 10, for(k=0, n, print1(Blocks(n,n,k), ", ")); print)

A247417 Number of nonisomorphic binary n X n matrices with two 1's per column under row and column permutations.

Original entry on oeis.org

1, 3, 11, 35, 132, 471, 1806, 7042, 28494, 118662, 510517, 2262738, 10337474, 48625631, 235357470, 1171163995, 5986424739, 31403695142, 168913667164, 930739116386, 5249162406890, 30275048671498, 178428441191289, 1073737691984694, 6592909590432719
Offset: 2

Views

Author

Marko Riedel, Sep 21 2014

Keywords

Crossrefs

Column k=2 of A304942.

Programs

  • Maple
    Using the uploaded program the call is seq(matrix_marks(n,2), n=3..15);
  • PARI
    \\ See A304942 for Blocks
    a(n) = Blocks(n, n, 2); \\ Andrew Howroyd, May 24 2018

Extensions

Terms a(17) and beyond from Andrew Howroyd, May 23 2018

A247597 Number of nonisomorphic binary n X n matrices with four 1's per column under row and column permutations.

Original entry on oeis.org

1, 7, 132, 6178, 594203, 85820809, 16341829155, 3875736708590, 1112175913348040, 378860991866916370, 151006214911844288232, 69600017255860985666964, 36729204987785981237238642, 22003003913198378660826731007, 14851323097928973689736994569534
Offset: 4

Views

Author

Marko Riedel, Sep 21 2014

Keywords

Crossrefs

Column k=4 of A304942.

Programs

  • Maple
    seq(matrix_marks(n,4), n=3..15); # Using the uploaded program to A247417
  • PARI
    \\ See A304942 for Blocks
    a(n) = Blocks(n, n, 4); \\ Andrew Howroyd, May 24 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, May 24 2018

A247598 Number of nonisomorphic binary n X n matrices with five 1's per column under row and column permutations.

Original entry on oeis.org

1, 11, 471, 122038, 85820809, 96018336018, 146662126879117, 291352421255114277, 734102568216405642199, 2304488853198195872625924, 8882860158091727486388086786, 41519759838668575020971562079517, 232748666229847254694256869145439898, 1549417862125158239133077344950011140191
Offset: 5

Views

Author

Marko Riedel, Sep 21 2014

Keywords

Crossrefs

Column k=5 of A304942.

Programs

  • Maple
    seq(matrix_marks(n,5), n=3..15); # Using the uploaded program to A247417
  • PARI
    \\ See A304942 for Blocks
    a(n) = Blocks(n, n, 5); \\ Andrew Howroyd, May 24 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, May 24 2018

A305027 Array read by antidiagonals: T(n,m) is the number of nonisomorphic binary n X m matrices with 3 1's per column under row and column permutations (m >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 7, 5, 1, 1, 1, 4, 11, 17, 6, 1, 1, 1, 4, 14, 40, 35, 9, 1, 1, 1, 4, 15, 62, 122, 76, 11, 1, 1, 1, 4, 16, 78, 272, 410, 149, 15, 1, 1, 1, 4, 16, 87, 427, 1307, 1270, 291, 18, 1, 1, 1, 4, 16, 91, 544, 2754, 6178, 3888, 539, 23, 1
Offset: 0

Views

Author

Andrew Howroyd, May 24 2018

Keywords

Comments

Also, the number of pure 2-complexes on m nodes with n multiple 2-simplexes.

Examples

			Array begins:
========================================================
n\m| 3  4   5    6     7      8      9     10     11
---+----------------------------------------------------
0  | 1  1   1    1     1      1      1      1      1 ...
1  | 1  1   1    1     1      1      1      1      1 ...
2  | 1  2   3    4     4      4      4      4      4 ...
3  | 1  3   7   11    14     15     16     16     16 ...
4  | 1  5  17   40    62     78     87     91     92 ...
5  | 1  6  35  122   272    427    544    606    635 ...
6  | 1  9  76  410  1307   2754   4251   5343   5939 ...
7  | 1 11 149 1270  6178  18247  36455  54621  67609 ...
8  | 1 15 291 3888 28687 122038 327774 616020 891831 ...
...
		

Crossrefs

Columns m=4..7 are A001400, A014395, A050911, A050912.
A diagonal is A247596.
Cf. A050913 (infinite m), A304942.

Programs

  • PARI
    \\ See A304942 for Blocks
    for(n=1, 8, for(m=3, 11, print1(Blocks(n, m, 3), ", ")); print)
Showing 1-5 of 5 results.