cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304964 Expansion of 1/(1 - Sum_{i>=1, j>=1, k>=1, l>=1} x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 5, 13, 47, 133, 443, 1333, 4263, 13143, 41419, 128791, 403815, 1259639, 3941579, 12310299, 38492034, 120271953, 375964616, 1174935195, 3672413322, 11477465221, 35872928244, 112117013835, 350417746650, 1095202995267, 3422999582632, 10698350241417, 33437065631262, 104505382585023
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Invert transform of A007426.

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(A(j, 4)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 29; CoefficientList[Series[1/(1 - Sum[x^(i j k l), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Sum[DivisorSigma[0, d] DivisorSigma[0, k/d], {d, Divisors[k]}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[DivisorSigma[0, d] DivisorSigma[0, k/d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A007426(k)*x^k).