A304969 Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).
1, 1, 2, 5, 11, 25, 57, 129, 292, 662, 1500, 3398, 7699, 17443, 39519, 89536, 202855, 459593, 1041267, 2359122, 5344889, 12109524, 27435660, 62158961, 140828999, 319065932, 722884274, 1637785870, 3710611298, 8406859805, 19046805534, 43152950024, 97768473163
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 31 2022: (Start) a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are: ((1)) ((2)) ((3)) ((4)) ((1)(1)) ((21)) ((31)) ((1)(2)) ((1)(3)) ((2)(1)) ((2)(2)) ((1)(1)(1)) ((3)(1)) ((1)(21)) ((21)(1)) ((1)(1)(2)) ((1)(2)(1)) ((2)(1)(1)) ((1)(1)(1)(1)) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2816
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Partition Function Q
- Index entries for sequences related to partitions
- Index entries for sequences related to compositions
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, add(b(j)*a(n-j), j=1..n)) end: seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
-
Mathematica
nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x] nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x] nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
Formula
G.f.: 1/(1 - Sum_{k>=1} A000009(k)*x^k).
G.f.: 1/(2 - Product_{k>=1} (1 + x^k)).
G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^(2*k-1))).
G.f.: 1/(2 - exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)))).
a(n) ~ c / r^n, where r = 0.441378990861652015438479635503868737167721352874... is the root of the equation QPochhammer[-1, r] = 4 and c = 0.4208931614610039677452560636348863586180784719323982664940444607322... - Vaclav Kotesovec, May 23 2018
Comments