A304970 Number of unlabeled hypertrees with up to n vertices and without singleton edges.
1, 1, 2, 4, 8, 17, 39, 98, 263, 759, 2299, 7259, 23649, 79057, 269629, 935328, 3290260, 11714285, 42139053, 152963037, 559697097, 2062574000, 7649550572, 28534096988, 106994891146, 403119433266, 1525466082179, 5795853930652, 22102635416716, 84579153865570
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(4) = 8 hypertrees are the following: {} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,3},{2,3}} {{1,4},{2,3,4}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
PARI
\\ here b(n) is A007563 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v} seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ Andrew Howroyd, Aug 27 2018