cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304972 Triangle read by rows of achiral color patterns (set partitions) for a row or loop of length n. T(n,k) is the number using exactly k colors (sets).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 10, 9, 3, 1, 1, 7, 19, 16, 12, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 15, 65, 90, 95, 46, 22, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 63, 665, 2002
Offset: 1

Views

Author

Robert A. Russell, May 22 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.

Examples

			Triangle begins:
1;
1,   1;
1,   1,    1;
1,   3,    2,    1;
1,   3,    5,    2,     1;
1,   7,   10,    9,     3,     1;
1,   7,   19,   16,    12,     3,     1;
1,  15,   38,   53,    34,    18,     4,    1;
1,  15,   65,   90,    95,    46,    22,    4,    1;
1,  31,  130,  265,   261,   195,    80,   30,    5,    1;
1,  31,  211,  440,   630,   461,   295,  100,   35,    5,   1;
1,  63,  422, 1221,  1700,  1696,  1016,  515,  155,   45,   6,  1
1,  63,  665, 2002,  3801,  3836,  3156, 1556,  710,  185,  51,  6, 1;
1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1;
For T(4,2)=3, the row patterns are AABB, ABAB, and ABBA.  The loop patterns are AAAB, AABB, and ABAB.
For T(5,3)=5, the color patterns for both rows and loops are AABCC, ABACA, ABBBC, ABCAB, and ABCBA.
		

Crossrefs

Columns 1-6 are A057427, A052551(n-2), A304973, A304974, A304975, A304976.
A305008 has coefficients that determine the function and generating function for each column.
Row sums are A080107.

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0],
      k Ach[n - 2, k] + Ach[n - 2, k - 1] + Ach[n - 2, k - 2]]
    Table[Ach[n, k], {n, 1, 15}, {k, 1, n}] // Flatten
    Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
      OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
      True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
      + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
    Table[Ach[n, k], {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
    { my(A=Ach(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019

Formula

T(n,k) = [n>1] * (k*T(n-2,k) + T(n-2,k-1) + T(n-2,k-2)) + [n<2 & n==k & n>=0].
T(2m-1,k) = A140735(m,k).
T(2m,k) = A293181(m,k).
T(n,k) = [k==0 & n==0] + [k==1 & n>0]
+ [k>1 & n==1 mod 2] * Sum_{i=0..(n-1)/2} (C((n-1)/2, i) * T(n-1-2i, k-1))
+ [k>1 & n==0 mod 2] * Sum_{i=0..(n-2)/2} (C((n-2)/2, i) * (T(n-2-2i, k-1)
+ 2^i * T(n-2-2i, k-2))) where C(n,k) is a binomial coefficient.