cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304974 Number of achiral color patterns (set partitions) for a row or loop of length n using exactly 4 colors (sets).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 9, 16, 53, 90, 265, 440, 1221, 2002, 5369, 8736, 22933, 37130, 96105, 155080, 397541, 640002, 1629529, 2619056, 6636213, 10653370, 26899145, 43144920, 108659461, 174174002, 437826489, 701478976, 1760871893, 2820264810, 7072185385, 11324105960, 28374834981, 45425564002, 113757620249
Offset: 0

Views

Author

Robert A. Russell, May 22 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.

Examples

			For a(6) = 9, the row color patterns are AABCDD, ABACDC, ABBCCD, ABCADC, ABCBCD, ABCCBD, ABCCDA, ABCDAB, and ABCBCD.  The loop color patterns are AAABCD, AABBCD, AABCCD, AABCDB, ABABCD, ABACAD, ABACBD, ABACDC, and ABCADC.
		

Crossrefs

Fourth column of A304972.
Fourth column of A140735 for odd n.
Fourth column of A293181 for even n.
Coefficients that determine the first formula and generating function are row 4 of A305008.

Programs

  • Magma
    I:=[0,0,0,1,2]; [0] cat [n le 5 select I[n] else Self(n-1) +7*Self(n-2) -7*Self(n-3) -12*Self(n-4) +12*Self(n-5): n in [1..40]]; // G. C. Greubel, Oct 17 2018
  • Mathematica
    Table[If[EvenQ[n], StirlingS2[n/2 + 2, 4] - StirlingS2[n/2 + 1, 4] - 2 StirlingS2[n/2, 4], 2 StirlingS2[(n + 3)/2, 4] - 4 StirlingS2[(n + 1)/2, 4]], {n, 0, 40}]
    Join[{0}, LinearRecurrence[{1, 7, -7, -12, 12}, {0, 0, 0, 1, 2}, 40]] (* Robert A. Russell, Oct 14 2018 *)
  • PARI
    m=40; v=concat([0,0,0,1,2], vector(m-5)); for(n=6, m, v[n] = v[n-1] +7*v[n-2] -7*v[n-3] -12*v[n-4] +12*v[n-5]); concat([0], v) \\ G. C. Greubel, Oct 17 2018
    

Formula

a(n) = [n==0 mod 2] * (S2(n/2+2, 4) - S2(n/2+1, 4) - 2*S2(n/2, 4)) + [n==1 mod 2] * (2*S2((n+3)/2, 4) - 4*S2((n+1)/2, 4)) where S2(n,k) is the Stirling subset number A008277(n,k).
G.f.: x^4 * (1+x)^2 * (1-2x^2) / Product_{k=1..4} (1 - k*x^2).
a(n) = A304972(n,4).
a(2m-1) = A140735(m,4).
a(2m) = A293181(m,4).