cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A265096 a(n) = Sum_{k=0..n} p(k)*q(k), where p(k) = partition numbers (A000041) and q(k) = partition numbers into distinct parts (A000009).

Original entry on oeis.org

1, 2, 4, 10, 20, 41, 85, 160, 292, 532, 952, 1624, 2779, 4597, 7567, 12319, 19711, 30997, 48707, 75167, 115295, 175487, 264665, 395185, 587335, 865371, 1267311, 1845231, 2670627, 3839267, 5498051, 7824331, 11080441, 15624505, 21927225, 30633780, 42642416
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 01 2015

Keywords

Crossrefs

Partial sums of A304991.

Programs

  • Mathematica
    Table[Sum[PartitionsQ[k]*PartitionsP[k], {k,0,n}], {n,0,50}]

Formula

a(n) ~ (sqrt(2)-1) * exp((1+sqrt(2))*Pi*sqrt(n/3)) / (8*3^(1/4)*Pi*n^(5/4)).

A363252 a(n) = gcd(A000041(n), A000009(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 2, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 3, 2, 2, 1, 4, 2, 3, 7, 2, 3, 1, 1, 1, 1, 21, 21, 2, 1, 1, 2, 6, 14, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 4, 4, 17, 1, 2, 1, 2, 2, 4, 1, 3, 5, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 4, 1, 1, 1, 2, 11, 2
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2023, inspired by Zhi-Wei Sun

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> igcd(b(n), combinat[numbpart](n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 23 2023
  • Mathematica
    Table[GCD[PartitionsP[n], PartitionsQ[n]], {n, 0, 100}]
Showing 1-2 of 2 results.