cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304993 a(n) = n*(n + 1)*(7*n + 5)/6.

Original entry on oeis.org

0, 4, 19, 52, 110, 200, 329, 504, 732, 1020, 1375, 1804, 2314, 2912, 3605, 4400, 5304, 6324, 7467, 8740, 10150, 11704, 13409, 15272, 17300, 19500, 21879, 24444, 27202, 30160, 33325, 36704, 40304, 44132, 48195, 52500, 57054, 61864, 66937, 72280, 77900, 83804, 89999, 96492
Offset: 0

Views

Author

Bruno Berselli, May 23 2018

Keywords

Comments

The sequence provides the sums of the triangular numbers from A000217(n) to A000217(2*n).

Crossrefs

Partial sums of A022265.
Cf. A045943: Sum_{k = n..2*n} k.
Cf. A050409: Sum_{k = n..2*n} k^2.
Row sums of the triangle in A141433.

Programs

  • Mathematica
    Table[n (n + 1) (7 n + 5)/6, {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,4,19,52},50] (* Harvey P. Dale, May 03 2023 *)
  • PARI
    concat(0, Vec(x*(4 + 3*x)/(1 - x)^4 + O(x^40))) \\ Colin Barker, May 25 2018

Formula

O.g.f.: x*(4 + 3*x)/(1 - x)^4.
E.g.f.: x*(24 + 33*x + 7*x^2)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = -A255211(-n-1).
a(n) + a(-n) = A016742(n).
a(n) = Sum_{k = n..2*n} k*(k+1)/2.