A305074 a(n) = 20*n - 8 (n>=1).
12, 32, 52, 72, 92, 112, 132, 152, 172, 192, 212, 232, 252, 272, 292, 312, 332, 352, 372, 392, 412, 432, 452, 472, 492, 512, 532, 552, 572, 592, 612, 632, 652, 672, 692, 712, 732, 752, 772, 792, 812, 832, 852, 872, 892, 912, 932, 952, 972, 992
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- F. Simonraj and A. George, Topological properties of few poly oxide, poly silicate, DOX and DSL networks, International J. of Future Computer and Communication, 2, No. 2, 2013, 90-95.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A305075.
Programs
-
GAP
List([1..50], n->20*n-8); # Muniru A Asiru, May 27 2018
-
Maple
seq(-8+20*n, n = 1 .. 50);
-
PARI
Vec(4*x*(3 + 2*x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, May 29 2018
Formula
From Colin Barker, May 29 2018: (Start)
G.f.: 4*x*(3 + 2*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
Comments