A305075 a(n) = 32*n - 24 (n>=1).
8, 40, 72, 104, 136, 168, 200, 232, 264, 296, 328, 360, 392, 424, 456, 488, 520, 552, 584, 616, 648, 680, 712, 744, 776, 808, 840, 872, 904, 936, 968, 1000, 1032, 1064, 1096, 1128, 1160, 1192, 1224, 1256, 1288, 1320, 1352, 1384, 1416, 1448, 1480, 1512, 1544, 1576
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- F. Simonraj and A. George, Topological properties of few poly oxide, poly silicate, DOX and DSL networks, International J. of Future Computer and Communication, 2, No. 2, 2013, 90-95.
- Index entries for linear recurrences with constant coefficients, signature (2,-1)
Programs
-
GAP
List([1..50], n->32*n-24); # Muniru A Asiru, May 27 2018
-
Maple
seq(32*n - 24, n = 1 .. 50);
-
Mathematica
32*Range[60]-24 (* or *) LinearRecurrence[{2,-1},{8,40},60] (* Harvey P. Dale, Mar 13 2022 *)
-
PARI
Vec(8*x*(1 + 3*x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, May 29 2018
Formula
a(n) = A063164(n) for n > 1.
From Colin Barker, May 29 2018: (Start)
G.f.: 8*x*(1 + 3*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
Comments