cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305079 Number of connected components of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 5, 2, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 1, 4, 1, 2, 1, 6, 1, 3, 1, 3, 2, 3, 1, 4, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

First differs from |A305052(n)| at a(169) = 1, A305052(169) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. If S is the integer partition with Heinz number n, a(n) is the number of connected components of G(S).

Examples

			The a(315) = 2 connected components of {2,2,3,4} are {{3},{2,2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[zsm[primeMS[n]]],{n,100}]
  • PARI
    zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2,#ys,if(ys[j]&&(1!=gcd(cs[i],ys[j])), listput(cs,ys[j]); ys[j] = 0)); i++); (ys); };
    A007814(n) = valuation(n,2);
    A000265(n) = (n/2^A007814(n));
    A305079(n) = if(!(n%2),A007814(n)+A305079(A000265(n)), my(cs = apply(p -> primepi(p),factor(n)[,1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Nov 10 2018

Formula

For all n, k > 0, we have a(2^n * k) = n + a(k).
For all x, y > 0, we have a(x * y) <= a(x) + a(y).
For x, y > 0 strongly coprime, we have a(x * y) = a(x) + a(y). Strongly coprime means every prime index of x is coprime to every prime index of y, where a prime index of n is a number m such that prime(m) divides n.
a(n) = A305501(A064989(n)) + A007814(n). - Antti Karttunen, Nov 10 2018

Extensions

Terms and Mathematica program corrected by Gus Wiseman, Nov 10 2018