cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305102 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 4, 10, 23, 46, 88, 158, 274, 459, 748, 1190, 1858, 2846, 4292, 6384, 9373, 13602, 19536, 27782, 39158, 54740, 75928, 104562, 143036, 194423, 262704, 352988, 471778, 627382, 830352, 1093994, 1435132, 1874920, 2439832, 3163020, 4085825, 5259602, 6748136
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A006128 and A000009.
Convolution of A305082 and A000041.
Convolution of A000005 and A015128.
a(n) is the number of non-overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(Pi*sqrt(n)) * (2*gamma + log(4*n/Pi^2)) / (8*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.