A305106 Number of unitary factorizations of Heinz numbers of integer partitions of n. Number of multiset partitions of integer partitions of n with pairwise disjoint blocks.
1, 1, 2, 4, 7, 12, 21, 34, 55, 87, 138, 211, 324, 486, 727, 1079, 1584, 2305, 3337, 4789, 6830, 9712, 13689, 19225, 26841, 37322, 51598, 71108, 97580, 133350, 181558, 246335, 332991, 448706, 602607, 806732, 1077333, 1433885, 1903682, 2520246, 3328549, 4383929
Offset: 0
Keywords
Examples
The a(6) = 21 unitary factorizations: (13) (21) (22) (25) (27) (28) (30) (36) (40) (48) (64) (2*11) (2*15) (3*7) (3*10) (3*16) (4*7) (4*9) (5*6) (5*8) (2*3*5) The a(6) = 21 multiset partitions: {{6}} {{2,4}} {{1,5}} {{3,3}} {{2,2,2}} {{1,1,4}} {{1,2,3}} {{1,1,2,2}} {{1,1,1,3}} {{1,1,1,1,2}} {{1,1,1,1,1,1}} {{1},{5}} {{1},{2,3}} {{2},{4}} {{2},{1,3}} {{2},{1,1,1,1}} {{1,1},{4}} {{1,1},{2,2}} {{3},{1,2}} {{3},{1,1,1}} {{1},{2},{3}}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Sum[BellB[Length[Union[y]]],{y,IntegerPartitions[n]}],{n,30}] (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]]; T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!; a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz in A321878 *)