A305150 Number of factorizations of n into distinct, pairwise indivisible factors greater than 1.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 3, 1, 2, 1, 6, 2, 2, 2, 3, 1, 6, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 5, 1, 3, 5
Offset: 1
Keywords
Examples
The a(60) = 6 factorizations are (3 * 4 * 5), (3 * 20), (4 * 15), (5 * 12), (6 * 10), (60). Missing from this list are (2 * 3 * 10), (2 * 5 * 6), (2 * 30).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Crossrefs
Programs
-
Mathematica
facs[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facs[n/d], Min@@ # >= d &]], {d, Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], UnsameQ@@ # && Select[Tuples[Union[#], 2], UnsameQ@@ # && Divisible@@ # &] == {} &]], {n, 100}]
-
PARI
A305150(n, m=n, facs=List([])) = if(1==n, 1, my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305150(n/d, d-1, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018
Formula
Extensions
More terms from Antti Karttunen, Dec 06 2018