cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305167 Constant term in the expansion of (Sum_{k=0..n} k*(x^k + x^(-k)))^4.

Original entry on oeis.org

0, 6, 198, 2076, 12060, 49170, 158418, 431544, 1036728, 2258910, 4552350, 8607060, 15430740, 26447850, 43617450, 69571440, 107774832, 162709686, 240084342, 347069580, 492563340, 687485634, 945105282, 1281400104, 1715452200, 2269879950, 2971308366
Offset: 0

Views

Author

Seiichi Manyama, Dec 16 2018

Keywords

Crossrefs

Column 4 of A322549.

Programs

  • GAP
    List([0..30],n->n*(n+1)*(2*n+1)*(17*n^4+34*n^3+28*n^2+11*n+15)/105); # Muniru A Asiru, Dec 16 2018
  • Mathematica
    a[n_] := Coefficient[Expand[Sum[k * (x^k + x^(-k)), {k, 0, n}]^4], x, 0]; Array[a, 30, 0] (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, n, k*(x^k+x^(-k))))^4, 0, x)}
    
  • PARI
    {a(n) = n*(n+1)*(2*n+1)*(17*n^4+34*n^3+28*n^2+11*n+15)/105}
    

Formula

a(n) = n * (n+1) * (2*n+1) * (17*n^4+34*n^3+28*n^2+11*n+15) / 105.
From Chai Wah Wu, Jun 09 2020: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 7.
G.f.: 6*x*(x + 1)*(x^4 + 24*x^3 + 86*x^2 + 24*x + 1)/(x - 1)^8. (End)