cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305187 Decimal expansion of the solution to x^x^x = 3.

Original entry on oeis.org

1, 6, 3, 5, 0, 7, 8, 4, 7, 4, 6, 3, 6, 3, 7, 5, 2, 4, 5, 8, 9, 9, 7, 5, 7, 1, 9, 8, 7, 8, 7, 5, 0, 0, 8, 8, 8, 1, 2, 3, 9, 8, 2, 1, 9, 2, 7, 6, 8, 1, 4, 6, 1, 9, 3, 5, 1, 7, 4, 4, 4, 5, 6, 2, 8, 9, 6, 7, 6, 2, 4, 6, 2, 3, 1, 6, 3, 0, 3, 6, 7, 6, 2, 0, 9, 1, 9, 5, 5, 7, 2, 0, 7, 9, 0, 4, 6, 9, 7, 3, 4, 1, 0, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 27 2018

Keywords

Comments

Let x(m) be the solution to the equation x^x^x^...^x = m, where x appears m times on the left hand side; e.g.,
decimal
m equation solution x(m) expansion
==== ==================== ============= =============
1 x = 1 1.00000000... A000007
2 x^x = 2 1.55961046... A030798
3 x^x^x = 3 1.63507847... this sequence
4 x^x^x^x = 4 1.62036995...
5 x^x^x^x^x = 5 1.59340881...
6 x^x^x^x^x^x = 6 1.56864406...
7 x^x^x^x^x^x^x = 7 1.54828598...
.
10 x^x^x^x^...^x = 10 1.50849792...
.
100 x^x^x^x^...^x = 100 1.44567285...
.
1000 x^x^x^x^...^x = 1000 1.44467831...
.
Then x(1) < x(m) < x(3) for all m >= 4.
Let y(k/2) be the solution to the equation y^y^y^...^y = (k/2)*y^y, where y appears k times on the left hand side; e.g.,
decimal
k equation solution y(k/2) expansion
= ========================= =============== =========
1 y = (1/2)*y^y 2 A000038
2 y^y = (2/2)*y^y indeterminate
3 y^y^y = (3/2)*y^y 1.6998419085...
4 y^y^y^y = (4/2)*y^y 1.6396207046...
5 y^y^y^y^y = (5/2)*y^y 1.5987769216...
6 y^y^y^y^y^y = (6/2)*y^y 1.5694666408...
7 y^y^y^y^y^y^y = (7/2)*y^y 1.5476452822...
.
What is lim_{k -> infinity} y(k/2)?
Lim_{m -> infinity} x(m) = e^(1/e). - Jon E. Schoenfield, Jul 23 2018
Lim_{k -> infinity} y(k/2) = e^(1/e). - Jon E. Schoenfield, Aug 01 2018

Examples

			1.635078474636375245899757198787500888...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[ x^x^x == 3, {x, 1}, WorkingPrecision -> 128][[1, 2]]][[1]] (* Robert G. Wilson v, Jun 13 2018 *)
  • PARI
    default(realprecision,333);
    solve(x=1.6, 1.7, x^x^x-3) \\ Joerg Arndt, May 27 2018

Extensions

More digits from Michel Marcus, Joerg Arndt, May 27 2018