A305194 Number of z-forests summing to n. Number of strict integer partitions of n with pairwise indivisible parts and all connected components having clutter density -1.
1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 13, 15, 17, 20, 23, 25, 27, 32, 35, 40, 45, 49, 54, 58, 67, 78, 82, 95, 99, 111, 123, 135, 150, 164, 177, 194, 214, 236, 260, 282, 309, 330
Offset: 1
Examples
The a(17) = 11 z-forests together with the corresponding multiset systems: (17): {{7}} (15,2): {{2,3},{1}} (14,3): {{1,4},{2}} (13,4): {{6},{1,1}} (12,5): {{1,1,2},{3}} (11,6): {{5},{1,2}} (10,7): {{1,3},{4}} (9,8): {{2,2},{1,1,1}} (10,4,3): {{1,3},{1,1},{2}} (7,6,4): {{4},{1,2},{1,1}} (7,5,3,2): {{4},{3},{2},{1}}
Links
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
Crossrefs
Programs
-
Mathematica
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1]; Table[Length[Select[IntegerPartitions[n],Function[s,UnsameQ@@s&&And@@(Length[#]==1||zreeQ[#]&)/@Table[Select[s,Divisible[m,#]&],{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,50}]
Comments