cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305198 Number of set partitions of [2n+1] with symmetric block size list of length A109613(n).

Original entry on oeis.org

1, 1, 7, 56, 470, 10299, 91925, 3939653, 36298007, 2571177913, 24158837489, 2557117944391, 24350208829581, 3601150175699409, 34626777577615921, 6820331445080882282, 66066554102006208712, 16719951521837764142510, 162903256982698962545956
Offset: 0

Views

Author

Alois P. Heinz, May 27 2018

Keywords

Crossrefs

Bisection (odd part) of A305197.

Programs

  • Maple
    b:= proc(n, s) option remember; expand(`if`(n>s,
          binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)*
          b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2)
        end:
    a:= n-> coeff(b(2*n+1, 0), x, n+irem(n+1, 2)):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1] x, 1] + Sum[Binomial[n - 1, j - 1] b[n - j, s + j] Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}] x^2];
    a[n_] := Coefficient[b[2n + 1, 0], x, n + Mod[n + 1, 2]];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

a(n) = A275281(2n+1,A109613(n)).