cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305256 Expansion of exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*sqrt(1 - 4*x^k))).

Original entry on oeis.org

1, 1, 2, 8, 27, 103, 389, 1497, 5786, 22556, 88230, 346576, 1365119, 5390585, 21327913, 84527939, 335477433, 1333079925, 5302763618, 21112688376, 84125853415, 335443149005, 1338370995240, 5342843332758, 21339341267983, 85266832981905, 340840044333836, 1362936812554758
Offset: 0

Views

Author

Ilya Gutkovskiy, May 28 2018

Keywords

Comments

Weigh transform of the central binomial coefficients 1, 2, 6, 20, 70, ... (A000984).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(binomial(2*i-2, i-1), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 28 2018
  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) x^k/(k Sqrt[1 - 4 x^k]), {k, 1, nmax}]], {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Product[(1 + x^k)^Binomial[2 k - 2, k - 1], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Binomial[2 d - 2, d - 1], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^binomial(2*k-2,k-1).