cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305272 a(n) = 836*2^n - 676.

Original entry on oeis.org

160, 996, 2668, 6012, 12700, 26076, 52828, 106332, 213340, 427356, 855388, 1711452, 3423580, 6847836, 13696348, 27393372, 54787420, 109575516, 219151708, 438304092, 876608860, 1753218396, 3506437468, 7012875612, 14025751900, 28051504476, 56103009628, 112206019932, 224412040540, 448824081756
Offset: 0

Views

Author

Emeric Deutsch, May 30 2018

Keywords

Comments

a(n) is the second Zagreb index of the polyphenylene dendrimer G[n], defined pictorially in the Arif et al. reference (see Fig. 1, where G[2] is shown).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the polyphenylene dendrimer G[n] is M(G[n]; x, y) = (56*2^n - 40)*x^2*y^2 + (48*2^n - 40)*x^2*y^3 +(36* 2^n - 36)*x^3*y^3 + 4*x^3 *y^4.

Crossrefs

Programs

  • Maple
    seq(836*2^n-676, n = 0..40);
  • Mathematica
    836*2^Range[0,40]-676 (* or  *) LinearRecurrence[{3,-2},{160,996},40] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    Vec(4*(40 + 129*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018

Formula

From Colin Barker, May 31 2018: (Start)
G.f.: 4*(40 + 129*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)