A305305 Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^k/(k*(1 - x^k))).
1, 1, 5, 32, 292, 3174, 42758, 659028, 11725656, 233646240, 5183599152, 126353158656, 3362529785712, 96896454983184, 3007687250735568, 100017757744279584, 3547903924884082176, 133715849506895518848, 5336112511923188151168, 224772952826373341478912, 9966476790792153522756864
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 32*x^3/3! + 292*x^4/4! + 3174*x^5/5! + 42758*x^6/6! + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..397
- N. J. A. Sloane, Transforms
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(add( 1/d, d=numtheory[divisors](j))*b(n-j), j=1..n)) end: a:= n-> b(n)*n!: seq(a(n), n=0..20); # Alois P. Heinz, May 29 2018
-
Mathematica
nmax = 20; CoefficientList[Series[1/(1 - Sum[x^k/(k (1 - x^k)), {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! nmax = 20; CoefficientList[Series[1/(1 - Sum[DivisorSigma[-1, k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[-1, k] a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
Comments