A305307 Expansion of e.g.f. 1/(1 - log(1 + x)/(1 - x)).
1, 1, 3, 17, 120, 1084, 11642, 146446, 2101656, 33958344, 609431232, 12033015840, 259163792016, 6047213451408, 151953760489008, 4091057804809104, 117485988199385088, 3584814699783432960, 115816462543697120640, 3949619921174717629056, 141780511159572486530304, 5344008726418981985707776
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 120*x^4/4! + 1084*x^5/5! + 11642*x^6/6! + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..410
- N. J. A. Sloane, Transforms
Programs
-
Maple
g:= proc(n) g(n):= `if`(n=1, 0, g(n-1))-(-1)^n/n end: b:= proc(n) option remember; `if`(n=0, 1, add(g(j)*b(n-j), j=1..n)) end: a:= n-> b(n)*n!: seq(a(n), n=0..20); # Alois P. Heinz, May 29 2018
-
Mathematica
nmax = 21; CoefficientList[Series[1/(1 - Log[1 + x]/(1 - x)), {x, 0, nmax}], x] Range[0, nmax]! nmax = 21; CoefficientList[Series[1/(1 - Sum[Sum[(-1)^(j + 1)/j, {j, 1, k}] x^k , {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = Sum[((-1)^(k + 1) LerchPhi[-1, 1, k + 1] + Log[2]) a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 21}]
Formula
a(n) ~ n! * (2 - LambertW(exp(2))) / ((1 + 1/LambertW(exp(2))) * (LambertW(exp(2)) - 1)^(n+1)). - Vaclav Kotesovec, Aug 08 2021
Comments