A305322 Repdigit numbers that are divisible by 3.
0, 3, 6, 9, 33, 66, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 3333, 6666, 9999, 33333, 66666, 99999, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 3333333, 6666666, 9999999, 33333333, 66666666, 99999999, 111111111, 222222222
Offset: 1
Examples
111 / 3 = 37; 222 / 3 = 74; 333 / 3 = 111; 444 / 3 = 148; 555 / 3 = 185.
Links
- Robert Israel, Table of n, a(n) for n = 1..4996
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000).
Crossrefs
Programs
-
Maple
L:= proc(d) if d mod 3 = 0 then [$1..9] else [3,6,9] fi end proc: 0,seq(seq((10^d-1)/9*k,k=L(d)),d=1..9); # Robert Israel, Jun 01 2018
-
Python
def A010785(n): return (n - 9*((n-1)//9))*(10**((n+8)//9) - 1)//9 def A305322(n): d0, d1 = divmod(n-1,15) if d1 < 7: return A010785(d0 * 27 + d1 * 3) return A010785(d0 * 27 + d1 + 12) # Karl-Heinz Hofmann, Nov 26 2023
Formula
From Alois P. Heinz, May 30 2018: (Start)
G.f.: 3*(300*x^20 + 200*x^19 + 100*x^18 + 330*x^17 + 220*x^16 + 110*x^15 + 333*x^14 + 296*x^13 + 259*x^12 + 222*x^11 + 185*x^10 + 148*x^9 + 111*x^8 + 74*x^7 + 37*x^6 + 33*x^5 + 22*x^4 + 11*x^3 + 3*x^2 + 2*x + 1)*x^2 / ((x-1) *(x^2 + x + 1) *(x^4 + x^3 + x^2 + x + 1) *(10*x^5-1) *(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) *(100*x^10 + 10*x^5 + 1)).
a(n) = 1001*a(n-15) - 1000*a(n-30). (End)
From Karl-Heinz Hofmann, Nov 11 2023: (Start)
a(n) = A010785(floor((n-1)/15)*27 + ((n-1) mod 15)*3) iff (n-1 <= 6 (mod 15)).
a(n) = A010785(floor((n-1)/15)*27 + ((n-1) mod 15) + 12) iff (n-1 > 6 (mod 15)).
(End)
Extensions
Name clarified by Felix Fröhlich, Jun 01 2018
Comments