A305349 Numbers k such that sopfr(k) = tau(k)^3.
183, 295, 583, 799, 943, 7042, 10978, 13581, 18658, 20652, 22402, 22898, 29698, 40162, 43522, 48442, 54778, 59362, 62338, 68098, 74938, 82618, 87418, 89722, 97282, 99298, 102202, 108418, 110842, 113122, 116602, 118498, 122362, 123322, 123778, 128482, 128698
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2]; add(t[1]*t[2],t=F) = mul(t[2]+1,t=F)^3 end proc: select(filter, [$1..200000]); # Robert Israel, Dec 10 2018
-
Mathematica
sopf[n_] := If[n==1,0,Plus@@Times@@@FactorInteger@ n];Select[Range[200000],sopf[#]==DivisorSigma[0,#]^3 &] (* Amiram Eldar, Nov 01 2018 *)
-
PARI
sopfr(n) = my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]); isok(n) = sopfr(n) == numdiv(n)^3; \\ Michel Marcus, Nov 02 2018
Comments