cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Parker Grootenhuis

Parker Grootenhuis's wiki page.

Parker Grootenhuis has authored 3 sequences.

A328506 Iteration of Abelian sandpile model where the n-th matrix expansions occurs. Begins with infinite sand in 1 X 1 matrix.

Original entry on oeis.org

1, 5, 16, 36, 66, 101, 160, 218, 285, 374, 464, 565, 680, 815, 969, 1124, 1282, 1467, 1659, 1863, 2091, 2346, 2559, 2824, 3100, 3411, 3690, 4043, 4380, 4697, 5060, 5468, 5833, 6266, 6670, 7132, 7595, 8006, 8502, 9004, 9518, 10039, 10609, 11155, 11740, 12304, 12971, 13603, 14202, 14861, 15532, 16217
Offset: 1

Author

Parker Grootenhuis, Oct 22 2019

Keywords

Comments

The Abelian sandpile model is a cellular automaton considering the behavior of sand grains on a square grid. Any square containing 4 or more grains will topple, sending a grain to each of its 4 neighbors and subtracting 4 grains from itself.
Here, expansion refers to the addition of a boundary layer to the outside of the existing matrix when the model reaches beyond the previous matrix boundary.

Examples

			                                                      _ _ _ _ _
          _ _ _      _ _ _      _ _ _      _ _ _     |0|0|1|0|0|
   _     |0|1|0|    |0|2|0|    |0|3|0|    |0|4|0|    |0|2|1|2|0|
  |∞| -> |1|∞|1| -> |2|∞|2| -> |3|∞|3| -> |4|∞|4| -> |1|1|∞|1|1| -> ...
   ‾     |0|1|0|    |0|2|0|    |0|3|0|    |0|4|0|    |0|2|1|2|0|
          ‾ ‾ ‾      ‾ ‾ ‾      ‾ ‾ ‾      ‾ ‾ ‾     |0|0|1|0|0|
                                                      ‾ ‾ ‾ ‾ ‾
            ^                                             ^
     1st expansion on                              2nd expansion on
   1st iteration (a(1) = 1)                      5th iteration (a(2) = 5)
		

Crossrefs

Programs

  • MATLAB
    L = 3;
    plane = zeros(3,3);
    plane(2,2) = 99999999999999999999999999999999999999999999999;
    listn = [];
    for n = 1:50000
        plane2 = plane;
        for r = 1:L
            for c = 1:L
                if plane(r,c) > 3
                    plane2(r,c) = plane2(r,c) - 4;
                    plane2(r-1,c) = plane2(r-1,c)+1;
                    plane2(r+1,c) = plane2(r+1,c)+1;
                    plane2(r,c-1) = plane2(r,c-1)+1;
                    plane2(r,c+1) = plane2(r,c+1)+1;
                end
            end
        end
        if sum(plane2(:,1))+sum(plane2(1,:)) > 0
            plane2 = padarray(plane2,[1,1]);
            L = L+2;
            listn = [listn n];
        end
        plane = plane2;
    end
    fprintf('%s\n', sprintf('%d,', listn))
    
  • PARI
    Step(M)={my(n=#M, R=matrix(n,n)); for(i=2, n-1, for(j=2, n-1, if(M[i,j]>=4, R[i,j]-=4; R[i,j+1]++; R[i,j-1]++; R[i-1,j]++; R[i+1,j]++))); M+R}
    Expand(M)={my(n=#M, R=matrix(n+2, n+2)); for(i=1, n, for(j=1, n, R[i+1, j+1]=M[i,j])); R}
    seq(n)={my(L=List(), M=matrix(3,3), k=0); while(#LAndrew Howroyd, Oct 23 2019

A305349 Numbers k such that sopfr(k) = tau(k)^3.

Original entry on oeis.org

183, 295, 583, 799, 943, 7042, 10978, 13581, 18658, 20652, 22402, 22898, 29698, 40162, 43522, 48442, 54778, 59362, 62338, 68098, 74938, 82618, 87418, 89722, 97282, 99298, 102202, 108418, 110842, 113122, 116602, 118498, 122362, 123322, 123778, 128482, 128698
Offset: 1

Author

Parker Grootenhuis, May 30 2018

Keywords

Comments

Numbers k such that A001414(k) = A000005(k)^3.
For numbers k that satisfy the condition, tau(k) will always be even because tau(k) is odd only if k is a square, but if k is a square then sopfr(k) is even (because every prime appears with an even exponent) and thus it cannot be equal to tau(k)^3 which is odd as tau(k).
A squarefree number k = p_1*...*p_j is in the sequence if p_1 + ... + p_j = 8^j. It is likely that 8^j is the sum of j distinct primes for all j >= 2. - Robert Israel, Dec 10 2018

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      add(t[1]*t[2],t=F) = mul(t[2]+1,t=F)^3
    end proc:
    select(filter, [$1..200000]); # Robert Israel, Dec 10 2018
  • Mathematica
    sopf[n_] := If[n==1,0,Plus@@Times@@@FactorInteger@ n];Select[Range[200000],sopf[#]==DivisorSigma[0,#]^3 &] (* Amiram Eldar, Nov 01 2018 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]);
    isok(n) = sopfr(n) == numdiv(n)^3; \\ Michel Marcus, Nov 02 2018

A305026 Numbers k such that sopfr(k) = tau(k)^2.

Original entry on oeis.org

39, 55, 354, 578, 1634, 1644, 6604, 8253, 9825, 12573, 13516, 14749, 15244, 16684, 18669, 18672, 19276, 19564, 21032, 22225, 25305, 28449, 29853, 31688, 33633, 35793, 41261, 41768, 41949, 42813, 48013, 50670, 54048, 59750, 60804, 63609, 63869, 65265, 78832
Offset: 1

Author

Parker Grootenhuis, May 23 2018

Keywords

Comments

For numbers k that satisfy the condition, tau(k) will always be even because tau(k) is odd only if k is a square, but if k is a square then sopfr(k) is even (because every prime appears with an even exponent) and thus it cannot be equal to tau(k)^2 which is odd as tau(k). - Giovanni Resta, May 24 2018

Crossrefs

Programs

  • Mathematica
    Rest@ Select[Range[10^5], Total[Times @@@ FactorInteger@ #] == DivisorSigma[0, #]^2 &] (* Michael De Vlieger, May 27 2018 *)
  • PARI
    isok(n) = my(f=factor(n)); sum(k=1,#f~,f[k,1]*f[k,2]) == numdiv(n)^2; \\ Michel Marcus, May 24 2018

Formula

k such that A001414(k) = A000005(k)^2.