A328506 Iteration of Abelian sandpile model where the n-th matrix expansions occurs. Begins with infinite sand in 1 X 1 matrix.
1, 5, 16, 36, 66, 101, 160, 218, 285, 374, 464, 565, 680, 815, 969, 1124, 1282, 1467, 1659, 1863, 2091, 2346, 2559, 2824, 3100, 3411, 3690, 4043, 4380, 4697, 5060, 5468, 5833, 6266, 6670, 7132, 7595, 8006, 8502, 9004, 9518, 10039, 10609, 11155, 11740, 12304, 12971, 13603, 14202, 14861, 15532, 16217
Offset: 1
Keywords
Examples
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |0|0|1|0|0| _ |0|1|0| |0|2|0| |0|3|0| |0|4|0| |0|2|1|2|0| |∞| -> |1|∞|1| -> |2|∞|2| -> |3|∞|3| -> |4|∞|4| -> |1|1|∞|1|1| -> ... ‾ |0|1|0| |0|2|0| |0|3|0| |0|4|0| |0|2|1|2|0| ‾ ‾ ‾ ‾ ‾ ‾ ‾ ‾ ‾ ‾ ‾ ‾ |0|0|1|0|0| ‾ ‾ ‾ ‾ ‾ ^ ^ 1st expansion on 2nd expansion on 1st iteration (a(1) = 1) 5th iteration (a(2) = 5)
Programs
-
MATLAB
L = 3; plane = zeros(3,3); plane(2,2) = 99999999999999999999999999999999999999999999999; listn = []; for n = 1:50000 plane2 = plane; for r = 1:L for c = 1:L if plane(r,c) > 3 plane2(r,c) = plane2(r,c) - 4; plane2(r-1,c) = plane2(r-1,c)+1; plane2(r+1,c) = plane2(r+1,c)+1; plane2(r,c-1) = plane2(r,c-1)+1; plane2(r,c+1) = plane2(r,c+1)+1; end end end if sum(plane2(:,1))+sum(plane2(1,:)) > 0 plane2 = padarray(plane2,[1,1]); L = L+2; listn = [listn n]; end plane = plane2; end fprintf('%s\n', sprintf('%d,', listn))
-
PARI
Step(M)={my(n=#M, R=matrix(n,n)); for(i=2, n-1, for(j=2, n-1, if(M[i,j]>=4, R[i,j]-=4; R[i,j+1]++; R[i,j-1]++; R[i-1,j]++; R[i+1,j]++))); M+R} Expand(M)={my(n=#M, R=matrix(n+2, n+2)); for(i=1, n, for(j=1, n, R[i+1, j+1]=M[i,j])); R} seq(n)={my(L=List(), M=matrix(3,3), k=0); while(#L
Andrew Howroyd, Oct 23 2019
Comments