A305412 a(n) = F(n)*F(n+1) + F(n+2), where F = A000045 (Fibonacci numbers).
1, 3, 5, 11, 23, 53, 125, 307, 769, 1959, 5039, 13049, 33929, 88451, 230957, 603667, 1578823, 4130829, 10810469, 28295411, 74067401, 193893263, 507590495, 1328842801, 3478880593, 9107706243, 23844088085, 62424315227, 163428464759, 427860443429, 1120151837069
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,1,-5,-1,1).
Crossrefs
Programs
-
GAP
List([0..35], n -> Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2)); # Muniru A Asiru, Jun 06 2018
-
Magma
[Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2): n in [0..30]];
-
Mathematica
Table[Fibonacci[n] Fibonacci[n+1] + Fibonacci[n+2], {n, 0, 30}]
Formula
G.f.: (1 - 5*x^2 - 2*x^3 + x^4)/((x + 1)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5).
5*a(n) = (-1)^(n+1) +5*F(n+2) + A002878(n). - R. J. Mathar, Nov 14 2019