cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305412 a(n) = F(n)*F(n+1) + F(n+2), where F = A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 3, 5, 11, 23, 53, 125, 307, 769, 1959, 5039, 13049, 33929, 88451, 230957, 603667, 1578823, 4130829, 10810469, 28295411, 74067401, 193893263, 507590495, 1328842801, 3478880593, 9107706243, 23844088085, 62424315227, 163428464759, 427860443429, 1120151837069
Offset: 0

Views

Author

Vincenzo Librandi, Jun 05 2018

Keywords

Crossrefs

Cf. A059769: F(n)*F(n+1) - F(n+2), with offset 3.
Equals A000045 + A286983.
First differences are listed in A059727 (after 0).

Programs

  • GAP
    List([0..35], n -> Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2)); # Muniru A Asiru, Jun 06 2018
  • Magma
    [Fibonacci(n)*Fibonacci(n+1)+Fibonacci(n+2): n in [0..30]];
    
  • Mathematica
    Table[Fibonacci[n] Fibonacci[n+1] + Fibonacci[n+2], {n, 0, 30}]

Formula

G.f.: (1 - 5*x^2 - 2*x^3 + x^4)/((x + 1)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5).
5*a(n) = (-1)^(n+1) +5*F(n+2) + A002878(n). - R. J. Mathar, Nov 14 2019